Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 365-374.DOI: 10.11772/j.issn.1001-9081.2021020230
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Yaming LI1,2, Kai XING1,2(), Hongwu DENG1,2, Zhiyong WANG1,2, Xuan HU1,2
Received:
2021-02-07
Revised:
2021-03-18
Accepted:
2021-03-26
Online:
2022-02-11
Published:
2022-02-10
Contact:
Kai XING
About author:
LI Yaming, born in 1996, M. S. candidate. His research interests include deep learning.
李亚鸣1,2, 邢凯1,2(), 邓洪武1,2, 王志勇1,2, 胡璇1,2
通讯作者:
邢凯
作者简介:
李亚鸣(1996—),男,江西赣州人,硕士研究生,主要研究方向:深度学习;CLC Number:
Yaming LI, Kai XING, Hongwu DENG, Zhiyong WANG, Xuan HU. Derivative-free few-shot learning based performance optimization method of pre-trained models with convolution structure[J]. Journal of Computer Applications, 2022, 42(2): 365-374.
李亚鸣, 邢凯, 邓洪武, 王志勇, 胡璇. 基于小样本无梯度学习的卷积结构预训练模型性能优化方法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 365-374.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021020230
Fig. 8 After randomly selecting a class, distribution of income R of all samples before and after combinational optimization of capital asset pricing model
网络模型 | 数据集 | Top-1 Acc | Top-5 Acc |
---|---|---|---|
AlexNet | ImageNet 2012(100类) | 58.82 | 83.51 |
CIFAR-100 | 61.29 | 81.34 | |
AlexNet改进模型 | ImageNet 2012(100类) | 68.50 | 92.25 |
CIFAR-100 | 69.15 | 89.55 | |
ResNet50 | ImageNet 2012(100类) | 78.51 | 94.20 |
ResNet50改进模型 | ImageNet 2012(100类) | 85.72 | 96.65 |
Tab. 1 Performance comparison of image classification tasks
网络模型 | 数据集 | Top-1 Acc | Top-5 Acc |
---|---|---|---|
AlexNet | ImageNet 2012(100类) | 58.82 | 83.51 |
CIFAR-100 | 61.29 | 81.34 | |
AlexNet改进模型 | ImageNet 2012(100类) | 68.50 | 92.25 |
CIFAR-100 | 69.15 | 89.55 | |
ResNet50 | ImageNet 2012(100类) | 78.51 | 94.20 |
ResNet50改进模型 | ImageNet 2012(100类) | 85.72 | 96.65 |
1 | XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5987-5995. 10.1109/cvpr.2017.634 |
2 | HUANG G, LIU Z, MAATEN L VAN DER, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
3 | ZHANG M R, LUCAS J, HINTON G, et al. Lookahead optimizer: k steps forward, 1 step back[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2021-01-22]. . |
4 | LILLICRAP T P, SANTORO A, MARRIS L, et al. Backpropagation and the brain[J]. Nature Reviews Neuroscience, 2020, 21(6): 335-346. 10.1038/s41583-020-0277-3 |
5 | KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(8): 5455-5516. 10.1007/s10462-020-09825-6 |
6 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[J]. [EB/OL]. (2017-01-30) [2021-01-03]. . |
7 | DUCHI J, HAZAN E, SINGER Y. Adaptive sub gradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12: 2121-2159. |
8 | FERNÁNDEZ-REDONDO M, HERNÁNDEZ-ESPINOSA C. Weight initialization methods for multilayer feedforward [C]// Proceedings of the 2001 European Symposium on Artificial Neural Networks. [2021-01-22]. . 10.1109/ijcnn.2001.939011 |
9 | SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization? [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 2488-2498. |
10 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
11 | BACHLECHNER T, MAJUMDER B P, MAO H H, et al. ReZero is all you need: fast convergence at large depth[EB/OL]. (2020-06-25) [2021-02-05]. . |
12 | RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[EB/OL]. (2017-10-27) [2021-02-05]. . |
13 | MISRA D, LANDSKAPE. Mish: a self-regularized non-monotonic neural activation function [C]// Proceedings of the 2020 British Machine Vision Conference. Durham: BMVA Press, 2020: No.928. |
14 | GAO Z T, WANG L M, WU G S. LIP: local importance-based pooling [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer. Piscataway: IEEE. 2019: 3354-3363. 10.1109/iccv.2019.00345 |
15 | GIRSHICK R. Fast R-CNN [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1440-1448. 10.1109/iccv.2015.169 |
16 | WANG Z N, XIANG C Q, ZOU W B, et al. MMA regularization: decorrelating weights of neural networks by maximizing the minimal angles[C/OL]// Proceedings of the 34th Conference on Neural Information Processing Systems. [2021-01-22]. . 10.1109/lsp.2020.3037512 |
17 | JENSEN M C, BLACK F, SCHOLES M S. The capital asset pricing model: some empirical tests[M]// JENSEN M C. Studies in the Theory of Capital Markets. New York: Praeger Publishers Inc., 1972: 25-28. |
18 | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. 10.1109/5.726791 |
19 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. |
20 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
21 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-01-20]. . 10.5244/c.28.6 |
22 | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. 10.1109/cvpr.2018.00474 |
23 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
24 | IGNATOV A, GOOL L VAN, TIMOFTE R. Replacing mobile camera ISP with a single deep learning model [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 2275-2285. 10.1109/cvprw50498.2020.00276 |
25 | BLUME M E, FRIEND I. A new look at the capital asset pricing model[J]. The Journal of Finance, 1973, 28(1): 19-34. 10.1111/j.1540-6261.1973.tb01342.x |
26 | PURKAIT P, ZHAO C, ZACH C. SPP-net: deep absolute pose regression with synthetic views[EB/OL]. (2017-12-09) [2021-02-05]. . |
27 | VILLANI C. Optimal Transport: Old and New[M]. Berlin: Springer, 2009: 131-140. 10.1007/978-3-540-71050-9_28 |
28 | PEYRÉ G, CUTURI M. Computational optimal transport: with applications to data science[J]. Foundations and Trends in Machine Learning, 2019, 11(5/6): 355-607. 10.1561/2200000073 |
29 | DANILA B, YU Y, MARSH J A, et al. Optimal transport on complex networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(4 Pt 2): No.046106. 10.1103/physreve.74.046106 |
30 | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks [C]// Proceedings of 34th Machine Learning Research. New York: JMLR.org, 2017: 214-223. |
31 | ALBAWI S, MOHAMMED T A, AL-AZAWI S. Understanding of a convolutional neural network [C]// Proceedings of the 2017 International Conference on Engineering and Technology. Piscataway: IEEE, 2017: 1-6. 10.1109/icengtechnol.2017.8308186 |
32 | PEARL J, MACKENZIE D. The Book of Why: the New Science of Cause and Effect[M]. New York: Basic Books, 2018: 6-29. |
33 | MELLOR J, TURNER J, STORKEY A, et al. Neural architecture search without training[J]. Journal of Machine Learning Research, 2019, 20: 1-21. |
34 | WEI W W S. Time Series Analysis: Univariate and Multivariate Methods[M]. 2nd ed. London: Pearson, 2006: 15-80. |
35 | KREMERS J J M, ERICSSON N R, DOLADO J J. The power of cointegration tests[J]. Oxford Bulletin of Economics and Statistics, 1992, 54(3): 325-348. 10.1111/j.1468-0084.1992.tb00005.x |
36 | HYLLEBERG S, ENGLE R F, GRANGER C W J, et al. Seasonal integration and cointegration[J]. Journal of Econometrics, 1990, 44(1/2): 215-238. 10.1016/0304-4076(90)90080-d |
37 | MOLCHANOV P, MALLYA A, TYREE S, et al. Importance estimation for neural network pruning [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11256-11264. 10.1109/cvpr.2019.01152 |
38 | LIU Z, SUN M J, ZHOU T H, et al. Rethinking the value of network pruning[EB/OL]. (2019-03-05) [2021-02-05]. . 10.1002/mrm.27229 |
39 | GEIRHOS R, RUBISCH P, MICHAELIS C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[EB/OL]. (2019-01-14) [2021-02-05]. . 10.1167/19.10.209c |
40 | LI X L, ZHOU Y B, WU T F, et al. Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting [C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 3925-3934. |
41 | WORTSMAN M, FARHADI A, RASTEGARI M. Discovering neural wirings[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2021-01-22]. . 10.1109/cvpr42600.2020.01191 |
42 | KIM Y, PARK W, ROH M C, et al. GroupFace: learning latent groups and constructing group-based representations for face recognition [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5620-5629. 10.1109/cvpr42600.2020.00566 |
43 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. 10.1016/s0262-4079(17)32358-8 |
44 | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. 10.1007/s11263-015-0816-y |
45 | KRIZHEVSKY A. learning multiple layers of features from tiny images[R/OL]. [2021-01-25]. . |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
[4] | Chenyang LI, Long ZHANG, Qiusheng ZHENG, Shaohua QIAN. Multivariate controllable text generation based on diffusion sequences [J]. Journal of Computer Applications, 2024, 44(8): 2414-2420. |
[5] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[6] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[7] | Zhengyu ZHAO, Jing LUO, Xinhui TU. Information retrieval method based on multi-granularity semantic fusion [J]. Journal of Computer Applications, 2024, 44(6): 1775-1780. |
[8] | Rong HUANG, Junjie SONG, Shubo ZHOU, Hao LIU. Image aesthetic quality evaluation method based on self-supervised vision Transformer [J]. Journal of Computer Applications, 2024, 44(4): 1269-1276. |
[9] | Xinran LUO, Tianrui LI, Zhen JIA. Chinese medical named entity recognition based on self-attention mechanism and lexicon enhancement [J]. Journal of Computer Applications, 2024, 44(2): 385-392. |
[10] | Ziqi HUANG, Jianpeng HU. Entity category enhanced nested named entity recognition in automotive domain [J]. Journal of Computer Applications, 2024, 44(2): 377-384. |
[11] | Liqing QIU, Xiaopan SU. Personalized multi-layer interest extraction click-through rate prediction model [J]. Journal of Computer Applications, 2024, 44(11): 3411-3418. |
[12] | Xiang LIN, Biao JIN, Weijing YOU, Zhiqiang YAO, Jinbo XIONG. Model integrity verification framework of deep neural network based on fragile fingerprint [J]. Journal of Computer Applications, 2024, 44(11): 3479-3486. |
[13] | Xingyao YANG, Hongtao SHEN, Zulian ZHANG, Jiong YU, Jiaying CHEN, Dongxiao WANG. Sequential recommendation based on hierarchical filter and temporal convolution enhanced self-attention network [J]. Journal of Computer Applications, 2024, 44(10): 3090-3096. |
[14] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. |
[15] | Li’an CHEN, Yi GUO. Text sentiment analysis model based on individual bias information [J]. Journal of Computer Applications, 2024, 44(1): 145-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||