Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (2): 638-644.DOI: 10.11772/j.issn.1001-9081.2023030271
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles Next Articles
Chenghanyu ZHANG1, Yuzhe LIN1, Chengke TAN1, Junfan WANG1,2, Yeting GU1,2, Zhekang DONG1,2, Mingyu GAO1,2()
Received:
2023-03-16
Revised:
2023-04-19
Accepted:
2023-04-23
Online:
2023-05-18
Published:
2024-02-10
Contact:
Mingyu GAO
About author:
ZHANG Chenghanyu, born in 2002, M. S. candidate. His research interests include computer vision, network lightweight.Supported by:
张成涵宇1, 林钰哲1, 谭程珂1, 王俊帆1,2, 顾烨婷1,2, 董哲康1,2, 高明煜1,2()
通讯作者:
高明煜
作者简介:
张成涵宇(2002—),男,浙江温州人,硕士研究生,主要研究方向:计算机视觉、网络轻量化基金资助:
CLC Number:
Chenghanyu ZHANG, Yuzhe LIN, Chengke TAN, Junfan WANG, Yeting GU, Zhekang DONG, Mingyu GAO. New dish recognition network based on lightweight YOLOv5[J]. Journal of Computer Applications, 2024, 44(2): 638-644.
张成涵宇, 林钰哲, 谭程珂, 王俊帆, 顾烨婷, 董哲康, 高明煜. 基于轻量化YOLOv5的新型菜品识别网络[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 638-644.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023030271
模型 | mAP@0.5 | mAP@0.5:0.95 |
---|---|---|
RetinaNet | 98.70 | 93.60 |
FasterRCNN | 96.60 | 92.70 |
YOLOv3 | 95.40 | 90.10 |
YOLOv5 | 99.50 | 96.30 |
YOLOv5-Lite | 99.20 | 86.20 |
YOLOv6 | 98.70 | 94.40 |
NanoDet-Plus | 93.50 | 91.90 |
本文模型 | 99.00 | 93.90 |
Tab.1 Average accuracy comparison among different models to recognize 85 kinds of real dishes
模型 | mAP@0.5 | mAP@0.5:0.95 |
---|---|---|
RetinaNet | 98.70 | 93.60 |
FasterRCNN | 96.60 | 92.70 |
YOLOv3 | 95.40 | 90.10 |
YOLOv5 | 99.50 | 96.30 |
YOLOv5-Lite | 99.20 | 86.20 |
YOLOv6 | 98.70 | 94.40 |
NanoDet-Plus | 93.50 | 91.90 |
本文模型 | 99.00 | 93.90 |
模型 | 每帧识别时间 | 模型 | 每帧识别时间 |
---|---|---|---|
RetinaNet | 156.58 | YOLOv5-Lite | 134.63 |
FasterRCNN | 232.38 | YOLOv6 | 60.31 |
YOLOv3 | 126.24 | NanoDet-Plus | 68.19 |
YOLOv5 | 79.53 | 本文模型 | 59.54 |
Tab.2 Time comparison among different models to recognize 85 kinds of real dishes from video stream on PC
模型 | 每帧识别时间 | 模型 | 每帧识别时间 |
---|---|---|---|
RetinaNet | 156.58 | YOLOv5-Lite | 134.63 |
FasterRCNN | 232.38 | YOLOv6 | 60.31 |
YOLOv3 | 126.24 | NanoDet-Plus | 68.19 |
YOLOv5 | 79.53 | 本文模型 | 59.54 |
神经网络模型 | 每帧的识别时间/s |
---|---|
YOLOv5模型 | 8.263 |
优化YOLOv5模型 | 2.313 |
Tab.3 Dish recognition speed comparison between YOLOv5 model and optimized YOLOv5 model
神经网络模型 | 每帧的识别时间/s |
---|---|
YOLOv5模型 | 8.263 |
优化YOLOv5模型 | 2.313 |
1 | GAO M, SHI J, DONG Z, et al. A Chinese dish detector with modified YOLOv3[C]// Intelligent Equipment, Robots, and Vehicles: Proceedings of the 7th International Conference on Life System Modeling and Simulation, and 7th International Conference on Intelligent Computing for Sustainable Energy and Environment, Part III. Cham: Springer, 2021: 174-183. 10.1007/978-981-16-7213-2_17 |
2 | KAWANO Y, YANAI K. Automatic expansion of a food image dataset leveraging existing categories with domain adaptation[C]// Proceedings of the 2014 European Conference on Computer Vision. Cham: Springer, 2015: 3-17. 10.1007/978-3-319-16199-0_1 |
3 | 苏国炀. 基于图像的中餐菜品分割与识别[D].杭州:浙江大学, 2019:36-58. |
SU G Y. Segmentation and recognition of Chinese dishes based on image [D]. Hangzhou: Zhejiang University, 2019:36-58. | |
4 | 边竞,王艺璇,代宇晖,等.基于卷积神经网络的中餐菜品名称成分识别[J].智能计算机与应用,2020,10(6):55-58. 10.3969/j.issn.2095-2163.2020.06.012 |
BIAN J, WANG Y X, DAI Y H, et al. Recognition of ingredients and dish names based on convolutional neural network [J]. Intelligent Computer and Applications, 2020, 10(6): 55-58. 10.3969/j.issn.2095-2163.2020.06.012 | |
5 | 王晓朋. 精细粒度的菜品识别方法研究[D]. 成都:电子科技大学, 2020:39-63. |
WANG X P. Research on fine-grained food image recognition [D]. Chengdu: University of Electronic Science and Technology of China, 2020: 39-63. | |
6 | 吴正东. 基于深度学习的中餐菜品图像分类算法研究[D].成都:电子科技大学,2020:41-58. |
WU Z D. Research on Chinese food dishes image classification algorithm based on deep learning [D]. Chengdu: University of Electronic Science and Technology of China, 2020: 41-58. | |
7 | 何志洋. 基于深度学习的菜品识别算法研究与系统实现[D].杭州:浙江工商大学, 2022:19-28. |
HE Z Y. Research and system implementation of dish recognition algorithm based on deep learning[D]. Hangzhou: Zhejiang Gongshang University, 2022:19-28. | |
8 | 朱瑶. 基于卷积神经网络的菜品识别系统研究[D].南京:南京信息工程大学,2020:15-42. |
ZHU Y. Research on dish recognition system based on convolutional neural network [D]. Nanjing: Nanjing University of Information Science and Technology, 2020:15-42. | |
9 | 朱凌云. 基于少样本学习的菜品识别算法研究[D].金华:浙江师范大学,2021:15-29. |
ZHU L Y. Research on dishes recognition algorithm based on few sample learning[D]. Jinhua: Zhejiang Normal University, 2021:15-29. | |
10 | 姚华莹,彭亚雄.基于轻量型卷积神经网络的菜品图像识别[J].软件工程, 2021,24(10):23-27. |
YAO H Y, PENG Y X. Dishes image recognition based on lightweight convolutional neural network[J]. Software Engineering, 2021, 24(10):23-27. | |
11 | 邓志良,李磊.基于改进残差网络的中式菜品识别模型[J].激光与光电子学进展,2021,58(6):256-264. 10.3788/lop202158.0610019 |
DENG Z L, LI L.Chinese food recognition model based on improved residual network[J]. Laser & Optoelectronics Progress,2021,58(6):256-264. 10.3788/lop202158.0610019 | |
12 | 张锦,屈佩琪,孙程,等.基于改进YOLOv5的安全帽佩戴检测算法[J].计算机应用,2022,42(4):1292-1300. |
ZHANG J, QU P Q, SUN C, et al. Safety helmet wearing detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2022, 42(4): 1292-1300. | |
13 | 尹靖涵,瞿绍军,姚泽楷,等.基于YOLOv5的雾霾天气下交通标志识别模型[J].计算机应用,2022,42(9):2876-2884. 10.11772/j.issn.1001-9081.2021071305 |
YIN J H, QU S J, YAO Z K, et al. Traffic sign recognition model in hazy weather based on YOLOv5[J]. Journal of Computer Applications, 2022,42(9): 2876-2884. 10.11772/j.issn.1001-9081.2021071305 | |
14 | WANG J, CHEN Y, DONG Z, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications, 2023, 35: 7853-7865. 10.1007/s00521-022-08077-5 |
15 | 张利红,蔡敬菊.基于轻量化YOLOv5算法的目标检测系统[J].计算机技术与发展,2022,32(11):134-139. 10.3969/j.issn.1673-629X.2022.11.020 |
ZHANG L H, CAI J J. Target detection system based on lightweight YOLOv5 algorithm[J]. Computer Technology and Development, 2022,32(11):134-139. 10.3969/j.issn.1673-629X.2022.11.020 | |
16 | 钟志峰,夏一帆,周冬平,等.基于改进YOLOv4的轻量化目标检测算法[J].计算机应用,2022,42(7):2201-2209. |
ZHONG Z F, XIA Y F, ZHOU D P, et al. Lightweight target detection algorithm based on improved YOLOv4[J]. Journal of Computer Applications, 2022,42(7): 2201-2209. | |
17 | WEN W, WU C, WANG Y, et al. Learning structured sparsity in deep neural networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook Curran Associates Inc., 2016: 2082-2090. |
18 | WANG W, CHEN M, ZHAO S, et al. Accelerate CNNs from three dimensions: a comprehensive pruning framework[C]// Proceedings of the 38th International Conference on Machine Learning. New York: PMLR, 2021, 139: 10717-10726. |
19 | LIU Z, LI J, SHEN Z, et al. Learning efficient convolutional networks through network slimming[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2755-2763. 10.1109/iccv.2017.298 |
20 | ZHOU H, LAN J, LIU R, et al. Deconstructing lottery tickets: Zeros, signs, and the supermask[EB/OL]. [2023-03-01]. . |
21 | TAN J H, CHAN C S, CHUAH J H. End-to-end supermask pruning: Learning to prune image captioning models[J]. Pattern Recognition, 2022, 122: 108366. 10.1016/j.patcog.2021.108366 |
22 | GHOLAMI A, KIM S, DONG Z, et al. A survey of quantization methods for efficient neural network inference [EB/OL]. [2023-02-14]. . 10.1201/9781003162810-13 |
23 | BANNER R, NAHSHAN Y, HOFFER E, et al. Post training 4-bit quantization of convolutional networks for rapid-deployment[EB/OL]. [2023-03-01]. . |
24 | WU B, WANG Y, ZHANG P, et al. Mixed precision quantization of ConvNets via differentiable neural architecture search [EB/OL]. [2022-12-21]. . |
25 | LIN T-Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision.Piscataway: IEEE, 2017: 2999-3007. 10.1109/iccv.2017.324 |
26 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6): 1137-1149. 10.1109/tpami.2016.2577031 |
27 | REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2023-02-15]. . 10.1109/cvpr.2017.690 |
28 | LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications [EB/OL]. [2022-12-06]. . |
[1] | Yanjun LI, Yaodong GE, Qi WANG, Weiguo ZHANG, Chen LIU. Improved KLEIN algorithm and its quantum analysis [J]. Journal of Computer Applications, 2024, 44(9): 2810-2817. |
[2] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
[3] | Yongjin ZHANG, Jian XU, Mingxing ZHANG. Lightweight algorithm for impurity detection in raw cotton based on improved YOLOv7 [J]. Journal of Computer Applications, 2024, 44(7): 2271-2278. |
[4] | Xiaohui CHENG, Yuntian HUANG, Ruifang ZHANG. Lightweight infrared road scene detection model based on multiscale and weighted coordinate attention [J]. Journal of Computer Applications, 2024, 44(6): 1927-1934. |
[5] | Xin LI, Qiao MENG, Junyi HUANGFU, Lingchen MENG. YOLOv5 multi-attribute classification based on separable label collaborative learning [J]. Journal of Computer Applications, 2024, 44(5): 1619-1628. |
[6] | Xiaogang SONG, Dongdong ZHANG, Pengfei ZHANG, Li LIANG, Xinhong HEI. Real-time object detection algorithm for complex construction environments [J]. Journal of Computer Applications, 2024, 44(5): 1605-1612. |
[7] | Huantong GENG, Zhenyu LIU, Jun JIANG, Zichen FAN, Jiaxing LI. Embedded road crack detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(5): 1613-1618. |
[8] | Jun FENG, Jiankang BI, Yiru HUO, Jiakuan LI. PIPNet: lightweight asphalt pavement crack image segmentation network [J]. Journal of Computer Applications, 2024, 44(5): 1520-1526. |
[9] | Bin XIAO, Yun GAN, Min WANG, Xingpeng ZHANG, Zhaoxing WANG. Network abnormal traffic detection based on port attention and convolutional block attention module [J]. Journal of Computer Applications, 2024, 44(4): 1027-1034. |
[10] | Zijie HUANG, Yang OU, Degang JIANG, Cailing GUO, Bailin LI. Lightweight deep learning algorithm for weld seam surface quality detection of traction seat [J]. Journal of Computer Applications, 2024, 44(3): 983-988. |
[11] | Yanran SHEN, Xin WEN, Jinhao ZHANG, Shuai ZHANG, Rui CAO, Baolu GAO. fMRI brain age prediction model with lightweight multi-scale convolutional network [J]. Journal of Computer Applications, 2024, 44(12): 3949-3957. |
[12] | Yong XIANG, Yanjun LI, Dingyun HUANG, Yu CHEN, Huiqin XIE. Differential and linear characteristic analysis of full-round Shadow algorithm [J]. Journal of Computer Applications, 2024, 44(12): 3839-3843. |
[13] | Ziqian CHEN, Kedi NIU, Zhongyuan YAO, Xueming SI. Review of blockchain lightweight technology applied to internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3688-3698. |
[14] | Xin ZHAO, Xinjie LI, Jian XU, Buyun LIU, Xiang BI. Parallel medical image registration model based on convolutional neural network and Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3915-3921. |
[15] | Xukang KAN, Gefei SHI, Xuerong YANG. ORB-SLAM2 algorithm based on dynamic feature point filtering and optimization of keyframe selection [J]. Journal of Computer Applications, 2024, 44(10): 3185-3190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||