Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (10): 3105-3113.DOI: 10.11772/j.issn.1001-9081.2023101378
• Data science and technology • Previous Articles Next Articles
Shengmin ZHENG1, Xiaodong FU1,2()
Received:
2023-10-13
Revised:
2023-12-31
Accepted:
2024-01-05
Online:
2024-10-15
Published:
2024-10-10
Contact:
Xiaodong FU
About author:
ZHENG Shengmin, born in 1997, M. S. candidate. His research interests include service computing, preference prediction.
Supported by:
通讯作者:
付晓东
作者简介:
郑升旻(1997—),男,四川自贡人,硕士研究生,主要研究方向:服务计算、偏好预测基金资助:
CLC Number:
Shengmin ZHENG, Xiaodong FU. Incomplete ordinal preference prediction using mixture of Plackett-Luce models[J]. Journal of Computer Applications, 2024, 44(10): 3105-3113.
郑升旻, 付晓东. 利用混合Plackett-Luce模型的不完整序数偏好预测[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3105-3113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101378
模型数 | 缺失率/% | ACC | 模型数 | 缺失率/% | ACC |
---|---|---|---|---|---|
1 | 20 | 0.876 | 3 | 20 | 0.880 |
30 | 0.860 | 30 | 0.863 | ||
40 | 0.839 | 40 | 0.845 | ||
50 | 0.811 | 50 | 0.818 | ||
60 | 0.780 | 60 | 0.791 | ||
70 | 0.732 | 70 | 0.744 | ||
80 | 0.677 | 80 | 0.699 | ||
2 | 20 | 0.878 | 4 | 20 | 0.882 |
30 | 0.861 | 30 | 0.866 | ||
40 | 0.844 | 40 | 0.847 | ||
50 | 0.816 | 50 | 0.819 | ||
60 | 0.790 | 60 | 0.794 | ||
70 | 0.744 | 70 | 0.749 | ||
80 | 0.697 | 80 | 0.704 |
Tab. 1 Prediction accuracy comparison with different number of models
模型数 | 缺失率/% | ACC | 模型数 | 缺失率/% | ACC |
---|---|---|---|---|---|
1 | 20 | 0.876 | 3 | 20 | 0.880 |
30 | 0.860 | 30 | 0.863 | ||
40 | 0.839 | 40 | 0.845 | ||
50 | 0.811 | 50 | 0.818 | ||
60 | 0.780 | 60 | 0.791 | ||
70 | 0.732 | 70 | 0.744 | ||
80 | 0.677 | 80 | 0.699 | ||
2 | 20 | 0.878 | 4 | 20 | 0.882 |
30 | 0.861 | 30 | 0.866 | ||
40 | 0.844 | 40 | 0.847 | ||
50 | 0.816 | 50 | 0.819 | ||
60 | 0.790 | 60 | 0.794 | ||
70 | 0.744 | 70 | 0.749 | ||
80 | 0.697 | 80 | 0.704 |
LEs | 缺失率/% | ACC | LEs | 缺失率/% | ACC |
---|---|---|---|---|---|
5 | 20 | 0.879 0 | 15 | 20 | 0.881 0 |
30 | 0.864 4 | 30 | 0.865 8 | ||
40 | 0.845 5 | 40 | 0.845 7 | ||
50 | 0.817 5 | 50 | 0.818 9 | ||
60 | 0.792 2 | 60 | 0.793 0 | ||
70 | 0.744 8 | 70 | 0.748 8 | ||
80 | 0.699 2 | 80 | 0.702 5 | ||
10 | 20 | 0.879 3 | 20 | 20 | 0.882 6 |
30 | 0.865 1 | 30 | 0.866 4 | ||
40 | 0.845 6 | 40 | 0.847 0 | ||
50 | 0.818 5 | 50 | 0.819 4 | ||
60 | 0.792 7 | 60 | 0.793 7 | ||
70 | 0.746 9 | 70 | 0.749 9 | ||
80 | 0.701 8 | 80 | 0.704 0 |
Tab. 2 Prediction accuracy comparison with different number of linear extensions
LEs | 缺失率/% | ACC | LEs | 缺失率/% | ACC |
---|---|---|---|---|---|
5 | 20 | 0.879 0 | 15 | 20 | 0.881 0 |
30 | 0.864 4 | 30 | 0.865 8 | ||
40 | 0.845 5 | 40 | 0.845 7 | ||
50 | 0.817 5 | 50 | 0.818 9 | ||
60 | 0.792 2 | 60 | 0.793 0 | ||
70 | 0.744 8 | 70 | 0.748 8 | ||
80 | 0.699 2 | 80 | 0.702 5 | ||
10 | 20 | 0.879 3 | 20 | 20 | 0.882 6 |
30 | 0.865 1 | 30 | 0.866 4 | ||
40 | 0.845 6 | 40 | 0.847 0 | ||
50 | 0.818 5 | 50 | 0.819 4 | ||
60 | 0.792 7 | 60 | 0.793 7 | ||
70 | 0.746 9 | 70 | 0.749 9 | ||
80 | 0.701 8 | 80 | 0.704 0 |
方法 | Movielens | sushi | ||
---|---|---|---|---|
ACC | Kendall CC | ACC | Kendall CC | |
Mallows | 0.884 | 0.839 | 0.671 | 0.497 |
VSRank | 0.887 | 0.837 | 0.675 | 0.506 |
CPC | 0.917 | 0.883 | 0.692 | 0.531 |
BayesMallows-1 | 0.898 | 0.863 | 0.688 | 0.519 |
MixPLPP-1 | 0.891 | 0.852 | 0.677 | 0.516 |
BayesMallows-4 | 0.923 | 0.895 | 0.697 | 0.538 |
MixPLPP-4 | 0.931 | 0.914 | 0.704 | 0.552 |
Tab. 3 Prediction accuracy and Kendall CC comparison on different datasets
方法 | Movielens | sushi | ||
---|---|---|---|---|
ACC | Kendall CC | ACC | Kendall CC | |
Mallows | 0.884 | 0.839 | 0.671 | 0.497 |
VSRank | 0.887 | 0.837 | 0.675 | 0.506 |
CPC | 0.917 | 0.883 | 0.692 | 0.531 |
BayesMallows-1 | 0.898 | 0.863 | 0.688 | 0.519 |
MixPLPP-1 | 0.891 | 0.852 | 0.677 | 0.516 |
BayesMallows-4 | 0.923 | 0.895 | 0.697 | 0.538 |
MixPLPP-4 | 0.931 | 0.914 | 0.704 | 0.552 |
模型数 | 缺失率/% | ACC | |
---|---|---|---|
MixPLPP | BayesMallows | ||
1 | 20 | 0.876 | 0.875 |
30 | 0.860 | 0.858 | |
40 | 0.839 | 0.841 | |
50 | 0.811 | 0.813 | |
60 | 0.780 | 0.783 | |
70 | 0.732 | 0.733 | |
80 | 0.677 | 0.688 | |
2 | 20 | 0.878 | 0.878 |
30 | 0.861 | 0.860 | |
40 | 0.844 | 0.845 | |
50 | 0.816 | 0.815 | |
60 | 0.790 | 0.791 | |
70 | 0.744 | 0.739 | |
80 | 0.697 | 0.696 | |
3 | 20 | 0.880 | 0.878 |
30 | 0.863 | 0.861 | |
40 | 0.845 | 0.845 | |
50 | 0.818 | 0.816 | |
60 | 0.791 | 0.791 | |
70 | 0.744 | 0.740 | |
80 | 0.699 | 0.697 | |
4 | 20 | 0.882 | 0.879 |
30 | 0.866 | 0.861 | |
40 | 0.847 | 0.846 | |
50 | 0.819 | 0.816 | |
60 | 0.794 | 0.792 | |
70 | 0.749 | 0.742 | |
80 | 0.704 | 0.697 |
Tab. 4 Comparison of prediction accuracy between MixPLPP and BayesMallows with different number of models
模型数 | 缺失率/% | ACC | |
---|---|---|---|
MixPLPP | BayesMallows | ||
1 | 20 | 0.876 | 0.875 |
30 | 0.860 | 0.858 | |
40 | 0.839 | 0.841 | |
50 | 0.811 | 0.813 | |
60 | 0.780 | 0.783 | |
70 | 0.732 | 0.733 | |
80 | 0.677 | 0.688 | |
2 | 20 | 0.878 | 0.878 |
30 | 0.861 | 0.860 | |
40 | 0.844 | 0.845 | |
50 | 0.816 | 0.815 | |
60 | 0.790 | 0.791 | |
70 | 0.744 | 0.739 | |
80 | 0.697 | 0.696 | |
3 | 20 | 0.880 | 0.878 |
30 | 0.863 | 0.861 | |
40 | 0.845 | 0.845 | |
50 | 0.818 | 0.816 | |
60 | 0.791 | 0.791 | |
70 | 0.744 | 0.740 | |
80 | 0.699 | 0.697 | |
4 | 20 | 0.882 | 0.879 |
30 | 0.866 | 0.861 | |
40 | 0.847 | 0.846 | |
50 | 0.819 | 0.816 | |
60 | 0.794 | 0.792 | |
70 | 0.749 | 0.742 | |
80 | 0.704 | 0.697 |
1 | ZAJONC R B, MARKUS H. Affective and cognitive factors in preferences[J]. Journal of Consumer Research, 1982,9(2):123-131. |
2 | 赵时海,付晓东,岳昆,等.用户群体满意度最大化的Top-k在线服务评价[J]. 软件学报, 2021, 32(11):3388-3403. |
ZHAO S H, FU X D, YUE K, et al. Top-k online service evaluating to maximize satisfaction of user group[J]. Journal of Software, 2021,32(11): 3388-3403. | |
3 | 徐海燕,姜瑛.针对复杂用户评论的代码质量属性判断[J]. 软件学报,2021,32(7):2183-2203. |
XU H Y, JIANG Y. Determination of code quality attribute for complex user’s comments[J]. Journal of Software,2021,32(7):2183-2203. | |
4 | ZHOU S, DAI X, CHEN H, et al. Interactive recommender system via knowledge graph-enhanced reinforcement learning[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event China. New York: ACM, 2020: 179-188. |
5 | 吴宾,陈允,孙中川,等.联合成对排序的物品推荐模型[J].通信学报,2019,40(9):193-206. |
WU B, CHEN Y, SUN Z C, et al. Co-pairwise ranking model for item recommendation[J]. Journal on Communications, 2019, 40(9): 193-206. | |
6 | 孙肖依,刘华锋,景丽萍,等. 基于列表级排序的深度生成推荐方法[J].计算机研究与发展,2020,57(8):1697-1706. |
SUN X Y, LIU H F, JING L P, et al. Deep generative recommendation based on list-wise ranking[J]. Journal of Computer Research and Development, 2020, 57(8): 1697-1706. | |
7 | FU X, YUE K, LIU L, et al. Aggregating ordinal user preferences for effective reputation computation of online services[C]//Proceedings of the 2016 IEEE International Conference on Web Services. Piscataway: IEEE, 2016:554-561. |
8 | 付晓东, 彭俊, 岳昆, 等.面向不完整序数偏好的在线服务评价[J].计算机集成制造系统, 2021, 27(10):2774-2785. |
FU X D, PENG J, YUE K, et al. Online service evaluation for incomplete ordinal preference[J]. Computer Integrated Manufacturing Systems, 2021, 27(10):2774-2785. | |
9 | HUANG S, WANG S, LIU T-Y, et al. Listwise collaborative filtering[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015:343-352. |
10 | UREÑA R, CHICLANA F, MORENTE-MOLINERA J A, et al. Managing incomplete preference relations in decision making: a review and future trends[J]. Information Sciences, 2015, 302:14-32. |
11 | FELIX B, VINCENT C, ULLE E, et al. Handbook of Computational Social Choice[M]. Cambridge: Cambridge University Press, 2016:223-256. |
12 | SEPLIARSKAIA A, KISELEVA J, RADLINSKI F, et al. Preference elicitation as an optimization problem[C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018:172-180. |
13 | LU T, BOUTILIER C. Robust approximation and incremental elicitation in voting protocols[C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2011: 287-293. |
14 | ZHANG X, CUI L, WANG Y. CommTrust: computing multi-dimensional trust by mining e-commerce feedback comments[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1631-1643. |
15 | WANG S, SUN J, GAO B J, et al. VSRank: a novel framework for ranking-based collaborative filtering[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): Article No. 51. |
16 | GUIVER J, SNELSON E. Bayesian inference for Plackett-Luce ranking models[C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009:377-384. |
17 | ZHAO Z, VILLAMIL T, XIA L. Learning mixtures of random utility models[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2018: 4530-4538. |
18 | VITELLI V, ØYSTEIN S, CRISPINO M, et al. Probabilistic preference learning with the Mallows rank model[J]. The Journal of Machine Learning Research, 2017, 18(1): 5796-5844. |
19 | PRIYOGI B. Preference elicitation strategy for conversational recommender system[C]// Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. New York: ACM, 2019:824-825. |
20 | BU Y, ZOU S, LIANG Y, et al. Estimation of KL divergence: optimal minimax rate[J]. IEEE Transactions on Information Theory, 2018, 64(4): 2648-2674. |
21 | LI L, XUE M, ZHANG Z, et al. Certainty-based preference completion[J]. Data Intelligence, 2022, 4(1):112-133. |
22 | LU T, BOUTILIER C. Effective sampling and learning for Mallows models with pairwise-preference data[J]. The Journal of Machine Learning Research, 2014,15(1):3783-3829. |
23 | LIU A, ZHAO Z, LIAO C. Learning Plackett-Luce mixtures from partial preferences[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2019:4328-4335. |
24 | MAYSTRE L, GROSSGLAUSER M. Fast and accurate inference of Plackett-Luce models[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015:172-180. |
25 | TKACHENKO M, LAUW W H. Plackett-Luce regression mixture model for heterogeneous rankings [C]// Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2016:237-246. |
26 | MATTEI N, WALSH T. PrefLib: a library for preferences data[C]// Proceedings of the 3rd International Conference on Algorithmic Decision Theory. Cham: Springer, 2013: 259-270. |
[1] | . Application of data fusion in fault diagnosis of energy Internet [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | Huiwen XIA, Zhongyu ZHAO, Zhuoer WANG, Qingyong ZHANG, Feng PENG. Public transportation epidemic monitoring system based on edge computing [J]. Journal of Computer Applications, 2022, 42(7): 2132-2138. |
[3] | Wei SHE, Qian ZHENG, Zhao TIAN, Wei LIU, Yinghao LI. Valve identification method based on double detection [J]. Journal of Computer Applications, 2022, 42(1): 273-279. |
[4] | LU Rongxiu, CHEN Mingming, YANG Hui, ZHU Jianyong. Element component content dynamic monitoring system based on time sequence characteristics of solution images [J]. Journal of Computer Applications, 2021, 41(10): 3075-3081. |
[5] | CHENG Qiwei, CHEN Qimai, HE Chaobo, LIU Hai. Overlapping community detection method based on improved symmetric binary nonnegative matrix factorization [J]. Journal of Computer Applications, 2020, 40(11): 3203-3210. |
[6] | WANG Siyu, GAO Weixin, LI Lu. Image quality evaluation model for X-ray circumferential welds [J]. Journal of Computer Applications, 2020, 40(9): 2748-2753. |
[7] | MIAO Sheng, DONG Liang, DONG Jian'e, ZHONG Lihui. Multi-objective automatic identification and localization system in mobile cellular networks [J]. Journal of Computer Applications, 2019, 39(11): 3343-3348. |
[8] | JI Lina, CHEN Kai, YU Yanwei, SONG Peng, WANG Shuying, WANG Chenrui. Vehicle type mining and application analysis based on urban traffic big data [J]. Journal of Computer Applications, 2019, 39(5): 1343-1350. |
[9] | GUO Fangfang, CHAO Luomeng, ZHU Jianwen. Multi-source data parallel preprocessing method based on similar connection [J]. Journal of Computer Applications, 2019, 39(1): 57-60. |
[10] | GAO Jingang, LIU Zhiyong, ZHANG Shuang, HOU Daishuang, LIU Xiaofeng. Application of binocular stereo vision technology in key dimension detection of CRH body [J]. Journal of Computer Applications, 2018, 38(9): 2673-2677. |
[11] | WU Qiuyu, ZHANG Mingxin, LIU Yongjun, ZHENG Jinlong. Microscopic 3D reconstruction method based on improved iterative shrinkage thresholding algorithm [J]. Journal of Computer Applications, 2018, 38(8): 2398-2404. |
[12] | YUAN Zhong, FENG Shan. Outlier detection algorithm based on neighborhood value difference metric [J]. Journal of Computer Applications, 2018, 38(7): 1905-1909. |
[13] | QIAO Jianhua, ZHANG Xueying. Compressive data gathering based on even clustering for wireless sensor networks [J]. Journal of Computer Applications, 2018, 38(6): 1691-1697. |
[14] | BI Chongchun, MENG Xiangfu, ZHANG Xiaoyan, TANG Yanhuan, TANG Xiaoliang, LIANG Haibo. Coupling similarity-based approach for categorizing spatial database query results [J]. Journal of Computer Applications, 2018, 38(1): 152-158. |
[15] | ZHANG Chengchang, ZHANG Huayu, LUO Jianchang, HE Feng. Massive data analysis of power utilization based on improved K-means algorithm and cloud computing [J]. Journal of Computer Applications, 2018, 38(1): 159-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||