Journal of Computer Applications ›› 0, Vol. ›› Issue (): 309-315.DOI: 10.11772/j.issn.1001-9081.2024010081

• Frontier and comprehensive applications • Previous Articles     Next Articles

Application of data fusion in fault diagnosis of energy Internet

Qiuya GUO1, Zhaogong ZHANG1(), Benran HU2, Yu PENG2, Di SUN2, Xin GUAN3   

  1. 1.School of Computer Science and Technology,Heilongjiang University,Harbin Heilongjiang 150080,China
    2.State Grid Heilongjiang Provincial Electric Power Company Limited,Harbin Heilongjiang 150080,China
    3.School of Data Science and Technology,Heilongjiang University,Harbin Heilongjiang 150080,China
  • Received:2024-01-23 Revised:2024-04-10 Accepted:2024-04-11 Online:2024-05-09 Published:2024-12-31
  • Contact: Zhaogong ZHANG

数据融合在能源互联网故障诊断中的应用

郭秋亚1, 张兆功1(), 胡本然2, 彭宇2, 孙迪2, 关心3   

  1. 1.黑龙江大学 计算机科学技术学院,哈尔滨 150080
    2.国网黑龙江省电力有限公司,哈尔滨 150080
    3.黑龙江大学 数据科学与技术学院,哈尔滨 150080
  • 通讯作者: 张兆功
  • 作者简介:郭秋亚(1997—),女,山东菏泽人,硕士研究生,主要研究方向:数据挖掘、数据融合、大数据
    张兆功(1963—),男,山东青岛人,教授,博士,CCF会员,主要研究方向:生物信息学、数据挖掘、统计遗传学、大数据、云计算、数字孪生
    胡本然(1970—),男,内蒙古呼伦贝尔人,教授级高级工程师,硕士,主要研究方向:电力系统自动化,大电网调度
    彭宇(1978—),男,黑龙江牡丹江人,高级工程师,硕士,主要研究方向:电力系统自动化,大电网调度
    孙迪(1986—),男,黑龙江哈尔滨人,高级工程师,硕士,主要研究方向:电力系统自动化、大电网调度
    关心(1979—),男,辽宁新民人,教授,博士,CCF会员,主要研究方向:能源互联网、大数据、人工智能。
  • 基金资助:
    国家自然科学基金资助项目(61972135);国家电网公司科技项目(SGHL0000DKJS2310205)

Abstract:

Aiming at the issues in fault diagnosis of energy Internet such as long model training time, insufficient extraction of fault features, and low diagnostic accuracy with limited training sample size, a Hierarchical Clustering and Multi-Head attention based Convolutional neural network (HCMHC) model was proposed. In the model, the novel Hierarchical Clustering (HC) model was adopted to reduce data redundancy effectively, while Convolutional Neural Network (CNN) and multi-head attention were combined for more accurate and comprehensive fault feature extraction. Furthermore, a contrastive learning model was employed to enhance the complementarity among features with limited training sample size, thereby improving model generalization ability and diagnostic accuracy on new data. Experimental verification results on the New England test system with 39 buses and 10 generators demonstrate that the HCMHC model achieves accuracies of 99.8% and 99.5% on two different datasets respectively, which have improvements of 4.3 and 4.5 percentage points approximately and respectively compared to the Multiple-Input CNN (MI-CNN) model. Additionally, even with a training set/validation set ratio of 20/80, this model still has accuracies of 98.3% and 95.8% on two datasets respectively. The above proves the significant effectiveness and superiority of the proposed model in the field of fault diagnosis.

Key words: fault diagnosis, data fusion, contrastive learning, multi-head attention, complementary fault feature

摘要:

针对能源互联网故障诊断时存在的模型训练时间长、故障特征提取不充分以及在训练样本数量有限的情况下诊断准确率低等问题,提出一种基于层次聚类和多头注意力的多任务卷积神经网络(HCMHC)模型。该模型通过采用新颖的层次聚类(HC)模型有效减少数据的冗余;同时结合了卷积神经网络(CNN)和多头注意力,更准确地提取出更全面的故障特征;此外,采用对比学习模型来在训练样本数量有限时增强特征间的互补性,进而提升模型对新数据的泛化处理能力和诊断准确度。在具有39条母线和10台发电机的新英格兰测试系统上进行的实验结果表明,HCMHC模型在两个不同的数据集上分别实现了99.8%和99.5%的准确率,相较于多输入CNN (MI-CNN)模型分别提高了约4.3和4.5个百分点。此外,即使在训练集与验证集的比例为20/80时,该模型仍然在两个数据集上分别达到了98.3%和95.8%的准确率。可见,所提模型在故障诊断领域中具有显著的有效性和优越性。

关键词: 故障诊断, 数据融合, 对比学习, 多头注意力, 互补故障特征

CLC Number: