1 |
ZHONG J, YANG Z, WONG S F. Machine condition monitoring and fault diagnosis based on support vector machine [C]// Proceedings of the 2010 IEEE International Conference on Indus-trial Engineering and Engineering Management. Piscataway: IEEE, 2010: 2228-2233.
|
2 |
BENKERCHA R, MOULAHOUM S. Fault detection and diagnosis based on C4.5 decision tree algorithms for grid connected PV system [J]. Solar Energy, 2018, 173: 610-634.
|
3 |
YANG Q, LI J, LE BLOND S, et al. Artificial neural net-work based fault detection and fault location in the DC microgrid [J]. Energy Procedia, 2016, 103: 129-134.
|
4 |
TANG S, ZHU Y, YUAN S. Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization [J]. ISA Transactions, 2022, 129(Pt A): 555-563.
|
5 |
ELSISI M, TRAN M Q, MAHMOUD K, et al. Effective IoT-based deep learning platform for online fault diagnosis of power transformers against cyberattacks and data uncertainties [J]. Measurement, 2022, 190: No.110686.
|
6 |
TANG S, ZHU Y, YUAN S. A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images [J]. Advanced Engineering Informatics, 2022, 52: No.101554.
|
7 |
LI B, ZHANG C, LIU G. Bearing fault diagnosis based on one-dimensional convolution network and residual training [C]// Proceedings of the 2019 Chinese Control Conference. Piscataway: IEEE, 2019: 5018-5023.
|
8 |
SHANMUGAPRIYA J, BASKARAN K. Rapid fault analysis by deep learning-based PMU for smart grid system [J]. Intelligent Automation and Soft Computing, 2023, 35(2): 1581-1594.
|
9 |
刘付琪,张达,宋建华,等.基于CNN-BiLSTM的液压系统故障诊断[J].计算机与现代化, 2023(9): 10-19.
|
10 |
XU Z, MEI X, WANG X, et al. Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short-term memory and weighted majority voting for multi-sensors [J]. Renewable Energy, 2022, 182: 615-626.
|
11 |
HAN D, TIAN J, XUE P, et al. A novel intelligent fault diagnosis method based on dual convolutional neural network with multi-level information fusion [J]. Journal of Mechanical Science and Technology, 2021, 35(8): 3331-3345.
|
12 |
CHOUDHARY A, MISHRA R K, FATIMA S, PANIGRAHI B K. Multi-input CNN based vibro-acoustic fusion for accurate fault diagnosis of induction motor [J]. Engineering Applications of Artificial Intelligence, 2023, 120: No.105872.
|
13 |
SUI L, GUAN X, CUI C, et al. Graph learning empowered situation awareness in Internet of energy with graph digital twin [J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 7268-7277.
|
14 |
YANG Y, WANG J, LI N. Data-driven fault diagnosis method based on fusion of multi-direction and multi-source signals [C]// Proceedings of the 5th International Conference on Intelligent Autonomous Systems. Piscataway: IEEE, 2022: 364-369.
|
15 |
张亚洲,赵小强,惠永永,等.基于多传感器数据融合的SA-DACNN齿轮箱故障诊断方法[J/OL].控制与决策[2024-04-02]. .
|
16 |
XU Z, BASHIR M, ZHANG W, et al. An intelligent fault diagnosis for machine maintenance using weighted soft-voting rule based multi-attention module with multi-scale information fusion [J]. Information Fusion, 2022, 86/87: 17-29.
|
17 |
ZHANG M, YANG Y. MPGCL: multi-perspective graph contrastive learning [C]// Proceedings of the 2023 International Conference on Database Systems for Advanced Applications, LNCS 13945. Cham: Springer, 2023: 351-366.
|
18 |
BANERJEE T P, DAS S. Multi-sensor data fusion using support vector machine for motor fault detection [J]. Information Sciences, 2012, 217: 96-107.
|
19 |
YU S, TRANCHEVENT L, LIU X, et al. Optimized data fusion for kernel k-means clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 1031-1039.
|
20 |
GAO H. A simple multi-sensor data fusion algorithm based on principal component analysis [C]// Proceedings of the 2009 ISECS International Colloquium on Computing, Communication, Control, and Management — Volume 2. Piscataway: IEEE, 2009: 423-426.
|
21 |
CAO Y, JI Y, SUN Y, et al. The fault diagnosis of a switch machine based on deep random forest fusion [J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(1): 437-452.
|
22 |
AZAMFAR M, SINGH J, BRAVO-IMAZ I, et al. Multi-sensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis [J]. Mechanical Systems and Signal Processing, 2020, 144: No.106861.
|
23 |
张洪亮,余其源,秦超群,等.基于信息融合及双连接注意力残差网络的轴承故障诊断[J].振动与冲击, 2023, 42(20): 114-123.
|
24 |
MIAO Z, ZHOU F, YUAN X, et al. Multi-heterogeneous sensor data fusion method via convolutional neural network for fault diagnosis of wheeled mobile robot [J]. Applied Soft Computing, 2022, 129: No.109554.
|
25 |
尹梓诺,马海龙,胡涛.基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法[J].电子与信息学报, 2023, 45(10): 3719-3728.
|
26 |
刘晶,梁佳杭,封晨,等.基于权重自适应特征融合的轴承故障诊断方法[J].郑州大学学报(理学版), 2023, 55(4): 54-60.
|
27 |
LI X, ZHANG S, SHA Q. Joint analysis of multiple phenotypes using a clustering linear combination method based on hierarchical clustering [J]. Genetic Epidemiology, 2020, 44(1): 67-78.
|
28 |
GÜLTEKIN Ö, CINAR E, ÖZKAN K, et al. Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle [J]. Expert Systems with Applications, 2022, 200: No.117055.
|
29 |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
|