Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 48-58.DOI: 10.11772/j.issn.1001-9081.2024010010
• Artificial intelligence • Previous Articles Next Articles
Changzheng XING1, Junfeng LIANG1(), Haibo JIN1, Jiayu XU1, Hairong WU2
Received:
2024-01-11
Revised:
2024-03-26
Accepted:
2024-03-26
Online:
2024-05-09
Published:
2025-01-10
Contact:
Junfeng LIANG
About author:
XING Changzheng, born in 1967, Ph. D., professor. His research interests include artificial intelligence, data mining.Supported by:
邢长征1, 梁浚锋1(), 金海波1, 徐佳玉1, 乌海荣2
通讯作者:
梁浚锋
作者简介:
邢长征(1967—),男,辽宁阜新人,教授,博士,CCF高级会员,主要研究方向:人工智能、数据挖掘;基金资助:
CLC Number:
Changzheng XING, Junfeng LIANG, Haibo JIN, Jiayu XU, Hairong WU. Multi-objective exam paper generation guided by reinforcement learning and matrix completion[J]. Journal of Computer Applications, 2025, 45(1): 48-58.
邢长征, 梁浚锋, 金海波, 徐佳玉, 乌海荣. 强化学习和矩阵补全引导的多目标试卷生成[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 48-58.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010010
数据集 | 题目数 | 学生数 | 问题数 | 答题次数 |
---|---|---|---|---|
ASSISTments0910 | 110 | 4 151 | 16 891 | 325 637 |
Statics2011 | 1 223 | 333 | 300 | 189 287 |
Tab. 1 Dataset information
数据集 | 题目数 | 学生数 | 问题数 | 答题次数 |
---|---|---|---|---|
ASSISTments0910 | 110 | 4 151 | 16 891 | 325 637 |
Statics2011 | 1 223 | 333 | 300 | 189 287 |
模型 | 难度 | 合理性 | 准确性 | 均值 |
---|---|---|---|---|
P-value | 9.722 5E-7 | 3.204 9E-14 | 0.011 5 | 1.629 5E-17 |
RSF | 0.882 6±0.014 2 | 0.895 9±0.011 6 | 0.861 9±0.017 0 | 0.880 1±0.014 3 |
MOCPSO | 0.897 2±0.009 0 | 0.912 2±0.011 6 | 0.872 4±0.012 5 | 0.893 9±0.011 0 |
PGA-EG | 0.919 9±0.007 2 | 0.925 7±0.007 4 | 0.903 0±0.009 0 | 0.916 2±0.007 9 |
MMGA | 0.916 9±0.008 6 | 0.920 5±0.008 5 | 0.898 3±0.010 4 | 0.911 9±0.009 2 |
DEGA | 0.920 4±0.006 1 | 0.921 4±0.006 3 | 0.903 5±0.008 2 | 0.918 9±0.007 3 |
SSA-GA | 0.923 5±0.004 6 | 0.934 1±0.038 0 | 0.910 7±0.009 5 | 0.920 3±0.006 7 |
MOEPG-r1 | 0.959 3±0.005 1 | 0.961 1±0.006 2 | 0.489 8±0.009 1 | 0.838 0±0.006 8 |
MOEPG-r2 | 0.931 9±0.003 8 | 0.973 3±0.003 9 | 0.421 9±0.011 2 | 0.782 0±0.006 3 |
MOEPG-r3 | 0.788 6±0.008 1 | 0.810 3±0.009 3 | 0.988 4±0.005 3 | 0.859 4±0.007 6 |
MOEPG | 0.931 9±0.004 2 | 0.955 8±0.004 1 | 0.921 8±0.006 7 | 0.932 2±0.005 0 |
Tab. 2 Model performance on ASSISTments0910 dataset
模型 | 难度 | 合理性 | 准确性 | 均值 |
---|---|---|---|---|
P-value | 9.722 5E-7 | 3.204 9E-14 | 0.011 5 | 1.629 5E-17 |
RSF | 0.882 6±0.014 2 | 0.895 9±0.011 6 | 0.861 9±0.017 0 | 0.880 1±0.014 3 |
MOCPSO | 0.897 2±0.009 0 | 0.912 2±0.011 6 | 0.872 4±0.012 5 | 0.893 9±0.011 0 |
PGA-EG | 0.919 9±0.007 2 | 0.925 7±0.007 4 | 0.903 0±0.009 0 | 0.916 2±0.007 9 |
MMGA | 0.916 9±0.008 6 | 0.920 5±0.008 5 | 0.898 3±0.010 4 | 0.911 9±0.009 2 |
DEGA | 0.920 4±0.006 1 | 0.921 4±0.006 3 | 0.903 5±0.008 2 | 0.918 9±0.007 3 |
SSA-GA | 0.923 5±0.004 6 | 0.934 1±0.038 0 | 0.910 7±0.009 5 | 0.920 3±0.006 7 |
MOEPG-r1 | 0.959 3±0.005 1 | 0.961 1±0.006 2 | 0.489 8±0.009 1 | 0.838 0±0.006 8 |
MOEPG-r2 | 0.931 9±0.003 8 | 0.973 3±0.003 9 | 0.421 9±0.011 2 | 0.782 0±0.006 3 |
MOEPG-r3 | 0.788 6±0.008 1 | 0.810 3±0.009 3 | 0.988 4±0.005 3 | 0.859 4±0.007 6 |
MOEPG | 0.931 9±0.004 2 | 0.955 8±0.004 1 | 0.921 8±0.006 7 | 0.932 2±0.005 0 |
模型 | 难度 | 合理性 | 准确性 | 均值 |
---|---|---|---|---|
P-value | 7.354 1E-12 | 1.167 4E-11 | 6.885 4E-9 | 5.556 3E-21 |
RSF | 0.938 9±0.025 1 | 0.836 4±0.001 8 | 0.682 9±0.013 8 | 0.819 4±0.013 6 |
MOCPSO | 0.954 3±0.013 4 | 0.857 5±0.001 0 | 0.694 0±0.011 7 | 0.835 3±0.008 7 |
PGA-EG | 0.971 2±0.006 7 | 0.895 3±0.000 8 | 0.719 9±0.007 0 | 0.862 1±0.004 8 |
MMGA | 0.967 6±0.010 5 | 0.884 9±0.001 6 | 0.705 1±0.009 6 | 0.852 5±0.007 2 |
DEGA | 0.972 2±0.005 7 | 0.892 4±0.001 1 | 0.718 2±0.007 0 | 0.861 1±0.004 2 |
SSA-GA | 0.977 4±0.004 9 | 0.902 5±0.000 9 | 0.774 9±0.007 7 | 0.863 1±0.004 3 |
MOEPG-r1 | 0.990 5±0.002 7 | 0.906 5±0.003 1 | 0.327 8±0.013 9 | 0.745 5±0.006 8 |
MOEPG-r2 | 0.985 2±0.004 3 | 0.923 4±0.001 0 | 0.276 1±0.012 5 | 0.729 2±0.006 1 |
MOEPG-r3 | 0.479 0±0.005 1 | 0.418 9±0.002 5 | 0.889 5±0.004 6 | 0.598 3±0.004 2 |
MOEPG | 0.988 9±0.004 9 | 0.909 9±0.000 7 | 0.734 9±0.005 4 | 0.887 6±0.003 7 |
Tab. 3 Model performance on Statics2 011 dataset
模型 | 难度 | 合理性 | 准确性 | 均值 |
---|---|---|---|---|
P-value | 7.354 1E-12 | 1.167 4E-11 | 6.885 4E-9 | 5.556 3E-21 |
RSF | 0.938 9±0.025 1 | 0.836 4±0.001 8 | 0.682 9±0.013 8 | 0.819 4±0.013 6 |
MOCPSO | 0.954 3±0.013 4 | 0.857 5±0.001 0 | 0.694 0±0.011 7 | 0.835 3±0.008 7 |
PGA-EG | 0.971 2±0.006 7 | 0.895 3±0.000 8 | 0.719 9±0.007 0 | 0.862 1±0.004 8 |
MMGA | 0.967 6±0.010 5 | 0.884 9±0.001 6 | 0.705 1±0.009 6 | 0.852 5±0.007 2 |
DEGA | 0.972 2±0.005 7 | 0.892 4±0.001 1 | 0.718 2±0.007 0 | 0.861 1±0.004 2 |
SSA-GA | 0.977 4±0.004 9 | 0.902 5±0.000 9 | 0.774 9±0.007 7 | 0.863 1±0.004 3 |
MOEPG-r1 | 0.990 5±0.002 7 | 0.906 5±0.003 1 | 0.327 8±0.013 9 | 0.745 5±0.006 8 |
MOEPG-r2 | 0.985 2±0.004 3 | 0.923 4±0.001 0 | 0.276 1±0.012 5 | 0.729 2±0.006 1 |
MOEPG-r3 | 0.479 0±0.005 1 | 0.418 9±0.002 5 | 0.889 5±0.004 6 | 0.598 3±0.004 2 |
MOEPG | 0.988 9±0.004 9 | 0.909 9±0.000 7 | 0.734 9±0.005 4 | 0.887 6±0.003 7 |
1 | CUI J, ZHOU Y, HUANG G. A test paper generation algorithm based on diseased enhanced genetic algorithm [J]. Heliyon, 2023, 9(6): No.e17187. |
2 | 王凤蕊,王文宏,董金新.基于自适应果蝇优化算法的平行试卷自动生成[J].计算工程与设计, 2015, 36(10): 2807-2812. |
WANG F R, WANG W H, DONG J X. Fruit fly optimization algorithm with adaptive mutation for intelligent parallel test-sheets composition problem [J]. Computer Engineering and Design, 2015, 36(10): 2807-2812. | |
3 | 秦川,祝恒书,庄福振,等.基于知识图谱的推荐系统研究综述[J].中国科学:信息科学, 2020, 50(7): 937-956. |
QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender systems [J]. SCIENTIA SINICA Informationis, 2020, 50(7): 937-956. | |
4 | THOMPSON Z, DOWNEY A R J, BAKOS J D, et al. Multi-modal generative adversarial networks for synthesizing time-series structural impact responses [J]. Mechanical Systems and Signal Processing, 2023, 204: No.110725. |
5 | SHAO J, YANG R. Controllable image caption based on adaptive weight and optimization strategy [J]. Pattern Recognition and Image Analysis, 2023, 33(1): 1-10. |
6 | SUN X, ZHAO X, LI B, et al. Dynamic key-value memory networks with rich features for knowledge tracing [J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8239-8245. |
7 | LIU Y, YANG Y, CHEN X, et al. Improving knowledge tracing via pre-training question embeddings [C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2020: 1577-1583. |
8 | PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing [EB/OL]. [2023-03-27]. . |
9 | GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2330-2339. |
10 | YANG Z P, ZHAO Y. Hybrid SGD algorithms to solve stochastic composite optimization problems with application in sparse portfolio selection problems [J]. Journal of Computational and Applied Mathematics, 2024, 436: No.115424. |
11 | NAHAR M, KAMAL A H M, HOSSAIN G. Protecting health data in the cloud through steganography: a table-driven, blind method using neural networks and bit-shuffling algorithm [J]. Journal of Network and Computer Applications, 2023, 217: No.103689. |
12 | YANG J H, LIU W Y, AN Y H, et al. Enhanced adaptive sequential Monte Carlo method for Bayesian model class selection by quantifying data fit and information gain [J]. Mechanical Systems and Signal Processing, 2024, 206: No.110792. |
13 | ABDELFATAH R I. A color image authenticated encryption using conic curve and Mersenne twister [J]. Multimedia Tools and Applications, 2020, 79(33/34): 24731-24756. |
14 | REN M, XU R, ZHU T. Double deep Q-network decoder based on EEG brain-computer interface [J]. ZTE Communications, 2023, 21(3): 3-10. |
15 | PATEL H R, SHAH V A. Type-2 fuzzy logic applications designed for active parameter adaptation in metaheuristic algorithm for fuzzy fault-tolerant controller [J]. International Journal of Intelligent Computing and Cybernetics, 2023, 16(2): 198-222. |
16 | CHEN Y. Study on non-iterative algorithms for center-of-sets type-reduction of Takagi-Sugeno-Kang type general type-2 fuzzy logic systems [J]. Complex and Intelligent Systems, 2022, 9: 4015-4023. |
17 | JOODAKI M, DOWLATSHAHI M B, JOODAKI N Z. An ensemble feature selection algorithm based on PageRank centrality and fuzzy logic [J]. Knowledge-Based Systems, 2021, 233: No.107538. |
18 | SALTO C, MINETTI G, ALBA E, et al. Big optimization with genetic algorithms: Hadoop, Spark, and MPI [J]. Soft Computing, 2023, 27(16): 11469-11484. |
19 | GAO M, YANG X. APSO-SL: an adaptive particle swarm optimization with state-based learning strategy [J]. Processes, 2024, 12(2): No.400. |
20 | YAN L. Design of 3D animation color rendering system supported by cloud computing based on genetic algorithm [J]. Soft Computing, 2024,28():77-77. |
21 | YU Z, KESKINOCAK P, ORENSTEIN W A, et al. A mixed integer programming model for vaccine pricing within a group purchasing organization [J]. Vaccine, 2024, 42(8): 1892-1898. |
22 | LI G, WEI Y, CHEN Y, et al. Softmax policy gradient methods can take exponential time to converge [J]. Mathematical Programming, 2023, 201(1/2): 707-802. |
23 | ECCLES B J, RODGERS P, KILPATRICK P, et al. DNNShifter: an efficient DNN pruning system for edge computing [J]. Future Generation Computer Systems, 2024, 152: 43-54. |
24 | MA Y, SHEN Y, GUAN H, et al. A novel approach to detect the spring corn phenology using layered strategy [J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 122: No.103422. |
25 | REN H, REN H, SUN Z. HSFA: a novel firefly algorithm based on a hierarchical strategy [J]. Knowledge-Based Systems, 2023, 279: No.110950. |
26 | ZHAO J, SHAO M, TANG H, et al. RHGNN: fake reviewer detection based on reinforced heterogeneous graph neural networks [J]. Knowledge-Based Systems, 2023, 280: No.111029. |
27 | DENG C, ZHANG Q, ZHANG H, et al. Research on rapid congestion identification method based on TSNE-FCM and LightGBM [J]. Sustainability, 2023, 15(14): No.11322. |
28 | BELTRAN-ROYO C, LLOPIS-IBOR L, PANTRIGO J J, et al. DC Neural Networks avoid over fitting in one-dimensional nonlinear regression [J]. Knowledge-Based Systems, 2024, 283: No.111154. |
29 | 郑道博,宁慧,张汝波.基于遗传算法的自动组卷系统的策略优化设计及实现[J].应用科技, 2023, 50(3): 17-21. |
ZHENG D B, NING H, ZHANG R B. Strategy optimization design and implementation of automatic test paper generation system based on genetic algorithm [J]. Applied Science and Technology, 2023, 50(3): 17-21. | |
30 | RAHUL, CHOUDHARY B. An advanced genetic algorithm with improved support vector machine for multi-class classification of real power quality events [J]. Electric Power Systems Research, 2021, 191: No.106879. |
31 | LIANG Y, BO K, MEYYAPPAN S, et al. Decoding fMRI data with support vector machines and deep neural networks [J]. Journal of Neuroscience Methods, 2024, 401: No.110004. |
32 | 张锟滨,陈玉明,吴克寿,等.粒向量驱动的随机森林分类算法研究[J].计算机工程与应用, 2024, 60(3): 148-156. |
ZHANG K B, CHEN Y M, WU K S, et al. Research on granule vectors random forest classification algorithm [J]. Computer Engineering and Applications, 2024, 60(3): 148-156. | |
33 | 夏文博,范威,高莉.基于卷积神经网络的水下多目标方位估计方法[J].声学技术, 2023, 42(3): 290-296. |
XIA W B, FAN W, GAO L. Underwater multi-target azimuth estimation method based on convolutional neural network [J]. Technical Acoustics, 2023, 42(3): 290-296. | |
34 | SONKAR S, WATERS A E, LAN A S, et al. qDKT: question-centric deep knowledge tracing [EB/OL]. [2023-03-27]. . |
35 | LIU D, ZHANG Y, ZHANG J, et al. Multiple features fusion attention mechanism enhanced deep knowledge tracing for student performance prediction [J]. IEEE Access, 2020, 8: 194894-194903. |
36 | HAN Y, LIU Z, LYU Y, et al. Deep learning-based visual ensemble method for high-speed railway catenary clevis fracture detection [J]. Neurocomputing, 2020, 396: 556-568. |
37 | ABIDI S M R, HUSSAIN M, XU Y, et al. Prediction of confusion attempting algebra homework in an intelligent tutoring system through machine learning techniques for educational sustainable development [J]. Sustainability, 2019, 11(1): No.105. |
38 | CHENG X. A multi-objective optimization approach for question routing in community question answering services [J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(9): 1779-1792. |
39 | NGUYEN M L, HUI S C, FONG A C M. Large-scale multiobjective static test generation for web-based testing with integer programing [J]. IEEE Transactions on Learning Technologies, 2013, 6(1): 46-59. |
40 | HAN L M, GAO H, ZHAI R J. Modelling and Simulation of Intelligent English Paper Generating Based on SSA‐GA[J]. Mathematical Problems in Engineering, 2023, 2023(1):2277185. |
[1] | Yu WANG, Tianjun REN, Zilin FAN. Air combat maneuver decision-making of unmanned aerial vehicle based on guided Minimax-DDQN [J]. Journal of Computer Applications, 2023, 43(8): 2636-2643. |
[2] | Yi ZHANG, Zhenmei WANG. circRNA-disease association prediction by two-stage fusion on graph auto-encoder [J]. Journal of Computer Applications, 2023, 43(6): 1979-1986. |
[3] | Zhenliang LI, Bo LI. Improved method of convolution neural network based on matrix decomposition [J]. Journal of Computer Applications, 2023, 43(3): 685-691. |
[4] | YAO Huayong, YE Dongyi, CHEN Zhaojiong. Multi-round conversational reinforcement learning recommendation algorithm via multi-granularity feedback [J]. Journal of Computer Applications, 2023, 43(1): 15-21. |
[5] | HU Xuemin, CHENG Yu, CHEN Guowen, ZHANG Ruohan, TONG Xiuchi. Motion planning for autonomous driving with directional navigation based on deep spatio-temporal Q-network [J]. Journal of Computer Applications, 2020, 40(7): 1919-1925. |
[6] | YANG Jianxi, ZHANG Yuanli, JIANG Hua, ZHU Xiaochen. Detection method of physical-layer impersonation attack based on deep Q-network in edge computing [J]. Journal of Computer Applications, 2020, 40(11): 3229-3235. |
[7] | ZHANG Li, KONG Xu, SUN Zhonggui. Matrix completion algorithm based on nonlocal self-similarity and low-rank matrix approximation [J]. Journal of Computer Applications, 2020, 40(11): 3327-3331. |
[8] | SHEN Xueli, LI Zijian, HE Chenhao. Hybrid recommendation algorithm based on rating filling and trust information [J]. Journal of Computer Applications, 2020, 40(10): 2789-2794. |
[9] | YANG Yanlin, YE Zhonglin, ZHAO Haixing, MENG Lei. Link prediction algorithm based on high-order proximity approximation [J]. Journal of Computer Applications, 2019, 39(8): 2366-2373. |
[10] | ZHOU Wan, HU Xuemin, SHI Chenyin, WEI Jieling, TONG Xiuchi. Motion planning algorithm of robot for crowd evacuation based on deep Q-network [J]. Journal of Computer Applications, 2019, 39(10): 2876-2882. |
[11] | SUN Wange, XIA Kewen, LAN Pu. Regularized weighted incomplete robust principal component analysis method and its application in fitting trajectory of wireless sensor network nodes [J]. Journal of Computer Applications, 2018, 38(6): 1709-1714. |
[12] | REN Xiaoxu, LYU Liangfu, CUI Guangtai. Data fusion algorithm of coupled images [J]. Journal of Computer Applications, 2018, 38(10): 2862-2868. |
[13] | LI Lina, LI Wenhao, YOU Hongxiang, WANG Yue. High efficient construction of location fingerprint database based on matrix completion improved by backtracking search optimization [J]. Journal of Computer Applications, 2017, 37(7): 1893-1899. |
[14] | HAO Liyan WANG Jing. Collaborative filtering recommendation algorithm based on filling and similarity confidence factor [J]. Journal of Computer Applications, 2013, 33(03): 834-837. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||