Journal of Computer Applications ›› 0, Vol. ›› Issue (): 267-273.DOI: 10.11772/j.issn.1001-9081.2024010035

• Multimedia computing and computer simulation • Previous Articles     Next Articles

Adaptive collaborative optimization algorithm for vehicle recognition based on FIPA model

Kaiming WANG1,2, Zhehao LUO2,3, Wenqi SUN2,3, Guoyuan LIANG2(), Yong LIANG1   

  1. 1.College of Mechanical and Control Engineering,Guilin University of Technology,Guilin Guangxi 541006,China
    2.Guangdong Provincial Key Laboratory of Robotics and Intelligent System (Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences),Shenzhen Guangdong 518055,China
    3.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2024-01-16 Revised:2024-04-09 Accepted:2024-04-10 Online:2024-05-09 Published:2024-12-31
  • Contact: Guoyuan LIANG

基于FIPA模型的自适应协同优化的车型识别算法

王开明1,2, 罗哲皓2,3, 孙文琪2,3, 梁国远2(), 梁勇1   

  1. 1.桂林理工大学 机械与控制工程学院,广西 桂林 541006
    2.广东省机器人与智能系统重点实验室(中国科学院深圳先进技术研究院),广东 深圳 518055
    3.中国科学院大学,北京 100049
  • 通讯作者: 梁国远
  • 作者简介:王开明(1998—),男,安徽安庆人,硕士研究生,主要研究方向:计算机视觉
    罗哲皓(1995—),男,江西萍乡人,硕士研究生,主要研究方向:计算机视觉
    孙文琪(2001—),女,山东淄博人,硕士研究生,主要研究方向:计算机图形学
    梁国远(1974—),男,广西北流人,副研究员,博士,主要研究方向:计算机视觉、模式识别
    梁勇(1981—),男,湖北武汉人,副教授,博士,主要研究方向:智能机器人、SLAM、FPGA、边缘计算、深度学习、目标检测。
  • 基金资助:
    中国科学院科技服务网络计划项目(STS)专项(STS-HP-202201)

Abstract:

In view of the challenges encountered in vehicle recognition tasks, including the artificial combinations ignoring the information of other parts and the precision decline caused by inconsistent values in multi-network fusion, an adaptive collaborative optimization algorithm based on Foundation for Intelligent Physical Agents (FIPA) model was proposed for vehicle recognition. Firstly, in the feature extraction process, SPace-to-Depth-Convolution (SPD-Conv) was used to replace the standard convolutional layer in YOLOv8 to solve the problem of fine-grained information loss and ineffective detection. Secondly, an adaptive collaborative optimization network was designed to mine the vehicle parts carrying effective information and solve the problem of disordered competition among agents. Finally, a weighted log-polar voting mechanism based on FIPA model was introduced to integrate the short-distance and long-distance fine-grained information to solve the problem of precision decline caused by inconsistent values of agents in the fusion process. Experimental results on DeepCar5.0 dataset show that compared with YOLOv5, the mean Average Precision (mAP) with Intersection over Union (IoU) of 0.5 of the proposed algorithm is improved by 1.80 percentage points in the object detection stage; in the classification fusion stage, the classification accuracy of the proposed algorithm is improved by 6.48 percentage points, and the classification accuracy is further improved by 7.53 percentage points through adding the preprocessing block.

Key words: vehicle recognition, collaborative optimization, feature extraction, log-polar voting, fine-grained information

摘要:

针对车型识别任务中存在的问题,包括人为组合忽略了其他部位信息以及多网络融合时价值不一致导致的精度下降等,提出一种基于FIPA (Foundation for Intelligent Physical Agents)模型的自适应协同优化算法用于车型识别。首先,在特征提取过程中采用空间到深度卷积层(SPD-Conv)替代YOLOv8中的标准卷积层,以解决细粒度信息丢失和无效检测问题;其次,设计了一种自适应协同优化网络来挖掘携带有效信息的汽车部件,并解决多智能体无序竞争问题;最后,引入基于FIPA模型的加权对数极坐标投票模块来整合近距离和远距离位置上的细粒度信息,从而解决融合过程中多智能体价值不一致所导致的精度下降问题。在DeepCar5.0数据集上的实验结果表明,在目标检测阶段相较于YOLOv5,所提算法在交并比(IoU)为0.5时的平均精度均值(mAP)提高了1.80个百分点;在分类融合阶段,所提算法的分类准确率提高了6.48个百分点,并通过增加预处理块将分类准确率又提高了7.53个百分点。

关键词: 车型识别, 协同优化, 特征提取, 对数极坐标投票, 细粒度信息

CLC Number: