Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 32-39.DOI: 10.11772/j.issn.1001-9081.2024010050
• Artificial intelligence • Previous Articles Next Articles
Rui LI1, Guanfeng LI1,2(), Dezhou HU1, Wenxin GAO1
Received:
2024-01-18
Revised:
2024-04-10
Accepted:
2024-04-10
Online:
2024-05-09
Published:
2025-01-10
Contact:
Guanfeng LI
About author:
LI Rui, born in 1998, M. S. candidate. Her research interests include knowledge graph.Supported by:
通讯作者:
李贯峰
作者简介:
李瑞(1998—),女(回族),宁夏银川人,硕士研究生,CCF会员,主要研究方向:知识图谱;基金资助:
CLC Number:
Rui LI, Guanfeng LI, Dezhou HU, Wenxin GAO. Knowledge graph multi-hop reasoning model fusing path and subgraph features[J]. Journal of Computer Applications, 2025, 45(1): 32-39.
李瑞, 李贯峰, 胡德洲, 高文馨. 融合路径与子图特征的知识图谱多跳推理模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 32-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010050
数据集 | 实体数 | 关系数 | 三元组 | 训练集 | 测试集 | 验证集 |
---|---|---|---|---|---|---|
FB15k-237 | 14 541 | 237 | 310 116 | 272 115 | 17 535 | 20 466 |
WN18RR | 40 943 | 11 | 93 003 | 86 835 | 3 034 | 3 134 |
Tab. 1 Statistics of datasets
数据集 | 实体数 | 关系数 | 三元组 | 训练集 | 测试集 | 验证集 |
---|---|---|---|---|---|---|
FB15k-237 | 14 541 | 237 | 310 116 | 272 115 | 17 535 | 20 466 |
WN18RR | 40 943 | 11 | 93 003 | 86 835 | 3 034 | 3 134 |
模型 | MRR | Hit@1 | Hit@3 | Hit@10 |
---|---|---|---|---|
Complex | 28.6 | 22.3 | 36.0 | 47.2 |
ConvE | 33.8 | 32.7 | 35.5 | 50.1 |
RotatE | 31.0 | 32.0 | 35.1 | 48.5 |
DeepPath | 32.1 | 23.5 | 35.6 | 49.3 |
MINERVA | 29.3 | 21.7 | 32.9 | 45.6 |
MemoryPath | 33.2 | 29.6 | 36.2 | 50.7 |
PS-HAM | 34.7 | 33.4 | 36.3 | 51.3 |
Tab. 2 Performance comparison of PS-HAM and benchmark models on FB15k-237 dataset
模型 | MRR | Hit@1 | Hit@3 | Hit@10 |
---|---|---|---|---|
Complex | 28.6 | 22.3 | 36.0 | 47.2 |
ConvE | 33.8 | 32.7 | 35.5 | 50.1 |
RotatE | 31.0 | 32.0 | 35.1 | 48.5 |
DeepPath | 32.1 | 23.5 | 35.6 | 49.3 |
MINERVA | 29.3 | 21.7 | 32.9 | 45.6 |
MemoryPath | 33.2 | 29.6 | 36.2 | 50.7 |
PS-HAM | 34.7 | 33.4 | 36.3 | 51.3 |
模型 | MRR | Hit@1 | Hit@3 | Hit@10 |
---|---|---|---|---|
Complex | 42.3 | 40.9 | 44.9 | 45.1 |
ConvE | 48.3 | 39.8 | 43.2 | 48.9 |
RotatE | 47.6 | 41.2 | 46.5 | 50.4 |
DeepPath | 46.7 | 42.5 | 47.2 | 52.1 |
MINERVA | 45.0 | 41.3 | 46.1 | 51.5 |
MemoryPath | 48.4 | 41.7 | 46.8 | 50.4 |
PS-HAM | 49.6 | 42.6 | 49.1 | 52.5 |
Tab. 3 Performance comparison of PS-HAM and benchmark models on WN18RR dataset
模型 | MRR | Hit@1 | Hit@3 | Hit@10 |
---|---|---|---|---|
Complex | 42.3 | 40.9 | 44.9 | 45.1 |
ConvE | 48.3 | 39.8 | 43.2 | 48.9 |
RotatE | 47.6 | 41.2 | 46.5 | 50.4 |
DeepPath | 46.7 | 42.5 | 47.2 | 52.1 |
MINERVA | 45.0 | 41.3 | 46.1 | 51.5 |
MemoryPath | 48.4 | 41.7 | 46.8 | 50.4 |
PS-HAM | 49.6 | 42.6 | 49.1 | 52.5 |
模型 | FB15k-237 | WN18RR | ||
---|---|---|---|---|
Hit@10 | MRR | Hit@10 | MRR | |
Complex | 47.2 | 28.6 | 45.1 | 42.3 |
ConvE | 50.1 | 33.8 | 48.9 | 48.3 |
RotatE | 48.5 | 31.0 | 50.4 | 47.6 |
DeepPath | 49.3 | 32.1 | 52.1 | 46.7 |
MINERVA | 45.6 | 29.3 | 51.5 | 45.0 |
MemoryPath | 50.7 | 33.2 | 50.4 | 48.4 |
PS-HAM-SS | 50.7 | 31.6 | 50.1 | 46.2 |
PS-HAM-ERLA | 50.5 | 33.9 | 49.9 | 47.1 |
PS-HAM-PLA | 51.1 | 34.1 | 50.9 | 48.1 |
PS-HAM | 51.3 | 34.7 | 52.5 | 49.6 |
Tab. 4 Ablation experimental results of PS-HAM components
模型 | FB15k-237 | WN18RR | ||
---|---|---|---|---|
Hit@10 | MRR | Hit@10 | MRR | |
Complex | 47.2 | 28.6 | 45.1 | 42.3 |
ConvE | 50.1 | 33.8 | 48.9 | 48.3 |
RotatE | 48.5 | 31.0 | 50.4 | 47.6 |
DeepPath | 49.3 | 32.1 | 52.1 | 46.7 |
MINERVA | 45.6 | 29.3 | 51.5 | 45.0 |
MemoryPath | 50.7 | 33.2 | 50.4 | 48.4 |
PS-HAM-SS | 50.7 | 31.6 | 50.1 | 46.2 |
PS-HAM-ERLA | 50.5 | 33.9 | 49.9 | 47.1 |
PS-HAM-PLA | 51.1 | 34.1 | 50.9 | 48.1 |
PS-HAM | 51.3 | 34.7 | 52.5 | 49.6 |
1 | 陈子睿,王鑫,王林,等.开放领域知识图谱问答研究综述[J].计算机科学与探索, 2021, 15(10): 1843-1869. |
CHEN Z R, WANG X, WANG L, et al. Survey of open-domain knowledge graph question answering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1843-1869. | |
2 | HUANG H, WANG Y, FENG C, et al. Leveraging conceptualization for short-text embedding [J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(7): 1282-1295. |
3 | CHEN Y, LI H, QI G, et al. Outlining and filling: hierarchical query graph generation for answering complex questions over knowledge graphs [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8343-8357. |
4 | HE H, BALAKRISHNAN A, ERIC M, et al. Learning symmetric collaborative dialogue agents with dynamic knowledge graph embeddings [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1766-1776. |
5 | YANG A, WANG Q, LIU J, et al. Enhancing pre-trained language representations with rich knowledge for machine reading comprehension [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2346-2357. |
6 | 侯中妮,靳小龙,陈剑赟,等.知识图谱可解释推理研究综述[J].软件学报, 2022, 33(12): 4644-4667. |
HOU Z N, JIN X L, CHEN J Y, et al. Survey of interpretable reasoning on knowledge graphs [J]. Journal of Software, 2022, 33(12): 4644-4667. | |
7 | LIANG Y, XU F, ZHANG S H, et al. Knowledge graph construction with structure and parameter learning for indoor scene design [J]. Computational Visual Media, 2018, 4(2): 123-137. |
8 | 陈跃鹤,谈川源,陈文亮,等.结合多重嵌入表示的中文知识图谱补全[J].中文信息学报, 2023, 37(1): 54-63. |
CHEN Y H, TAN C Y, CHEN W L, et al. Chinese knowledge graph complementation with multiple embeddings [J]. Journal of Chinese Information Processing, 2023, 37(1): 54-63. | |
9 | WANG Y, LIU Y, ZHANG H, et al. Leveraging lexical semantic information for learning concept-based multiple embedding representations for knowledge graph completion [C]// Proceedings of the 2019 Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, LNCS 11641. Cham: Springer, 2019: 382-397. |
10 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 2787-2795. |
11 | WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119. |
12 | LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion [C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2181-2187. |
13 | YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases [EB/OL]. [2023-11-13]. . |
14 | 李源,马新宇,杨国利,等.面向知识图谱和大语言模型的因果关系推断综述[J].计算机科学与探索, 2023, 17(10): 2358-2376. |
LI Y, MA X Y, ZHAO G L, et al. Survey of causal inference for knowledge graphs and large language models [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376. | |
15 | LAO N, COHEN W W. Relational retrieval using a combination of path-constrained random walks [J]. Machine Learning, 2010, 81(1): 53-67. |
16 | NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data [C]// Proceedings of the 28th International Conference on Machine Learning. Madison, WI: Omnipress, 2011: 809-816. |
17 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080. |
18 | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1811-1818. |
19 | BALAŽEVIĆ I, ALLEN C, HOSPEDALES T M. Hypernetwork knowledge graph embeddings [C]// Proceedings of the 2019 International Conference on Artificial Neural Networks: Workshop and Special Sessions, LNCS 11731. Cham: Springer, 2019: 553-565. |
20 | LE T, LE N, LE B. Knowledge graph embedding by relational rotation and complex convolution for link prediction [J]. Expert Systems with Applications, 2023, 214: No.119122. |
21 | XIONG B, ZHU S, NAYYERI M, et al. Ultrahyperbolic knowledge graph embeddings [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 2130-2139. |
22 | WANG Q, LIU J, LUO Y, et al. Knowledge base completion via coupled path ranking [C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 1308-1318. |
23 | NEELAKANTAN A, ROTH B, McCALLUM A. Compositional vector space models for knowledge base inference [C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 156-166. |
24 | McCALLUM A, NEELAKANTAN A, BELANGER D, et al. Chains of reasoning over entities, relations, and text using recurrent neural networks [C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Stroudsburg: ACL, 2017: 132-141. |
25 | JAGVARAL B, LEE W K, ROH J S, et al. Path-based reasoning approach for knowledge graph completion using CNN-BiLSTM with attention mechanism [J]. Expert Systems with Applications, 2020, 142: No.112960. |
26 | XIONG W, HOANG T L G, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 564-573. |
27 | DAS R, DHULIAWALA S, ZAHEER M, et al. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning [EB/OL]. [2023-11-13]. . |
28 | LI S, WANG H, PAN R, et al. MemoryPath: a deep reinforcement learning framework for incorporating memory component into knowledge graph reasoning [J]. Neurocomputing, 2021, 419: 273-286. |
29 | BALLOCCU G, BORATTO L, FENU G, et al. Reinforcement recommendation reasoning through knowledge graphs for explanation path quality [J]. Knowledge-Based Systems, 2023, 260: No.110098. |
30 | SHEN Y, DING N, ZHENG H T, et al. Modeling relation paths for knowledge graph completion [J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(11): 3607-3617. |
31 | LI C, PENG X, ZHANG S, et al. Modeling relation paths for knowledge base completion via joint adversarial training [J]. Knowledge-Based Systems, 2020, 201/202: No.105865. |
32 | WANG Y, XIAO W, TAN Z, et al. Caps-OWKG: a capsule network model for open-world knowledge graph [J]. International Journal of Machine Learning and Cybernetics, 2021, 12(6): 1627-1637. |
33 | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the 2018 European Semantic Web Conference, LNCS 10843. Cham: Springer, 2018: 593-607. |
34 | TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference [C]// Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Stroudsburg: ACL, 2015: 57-66. |
[1] | Shang LIU, Yuwei ZHOU, Rao DAI, Linfang DONG, Meng LIU. Small target detection algorithm in remote sensing images integrating attention and contextual information [J]. Journal of Computer Applications, 2025, 45(1): 292-300. |
[2] | Pengcheng SONG, Lijun GUO, Rong ZHANG. Weakly supervised video anomaly detection with local-global temporal dependency [J]. Journal of Computer Applications, 2025, 45(1): 240-246. |
[3] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[4] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[5] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[6] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[7] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[8] | Xin LI, Qiao MENG, Junyi HUANGFU, Lingchen MENG. YOLOv5 multi-attribute classification based on separable label collaborative learning [J]. Journal of Computer Applications, 2024, 44(5): 1619-1628. |
[9] | Guijin HAN, Xinyuan ZHANG, Wentao ZHANG, Ya HUANG. Self-supervised image registration algorithm based on multi-feature fusion [J]. Journal of Computer Applications, 2024, 44(5): 1597-1604. |
[10] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[11] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[12] | Zongze JIA, Pengfei GAO, Yinglong MA, Xiaofeng LIU, Haixin XIA. Multi-feature fusion attention-based hierarchical classification method for dialogue act [J]. Journal of Computer Applications, 2024, 44(3): 715-721. |
[13] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. |
[14] | Xinye LI, Yening HOU, Yinghui KONG, Zhiqi YAN. Few-shot object detection combining feature fusion and enhanced attention [J]. Journal of Computer Applications, 2024, 44(3): 745-751. |
[15] | Ning WU, Yangyang LUO, Huajie XU. Semantic segmentation method for remote sensing images based on multi-scale feature fusion [J]. Journal of Computer Applications, 2024, 44(3): 737-744. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||