Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 428-435.DOI: 10.11772/j.issn.1001-9081.2024020202
• Data science and technology • Previous Articles
Hanlin ZHANG, Junlu WANG, Baoyan SONG()
Received:
2024-02-29
Revised:
2024-05-14
Accepted:
2024-05-17
Online:
2024-06-04
Published:
2025-02-10
Contact:
Baoyan SONG
About author:
ZHANG Hanlin, born in 1993, Ph. D. candidate. His research interests include temporal graph query, machine learning.Supported by:
通讯作者:
宋宝燕
作者简介:
张翰林(1993—),男,辽宁沈阳人,博士研究生,CCF会员,主要研究方向:时序图查询、机器学习基金资助:
CLC Number:
Hanlin ZHANG, Junlu WANG, Baoyan SONG. Time series event classification method fused with derived features[J]. Journal of Computer Applications, 2025, 45(2): 428-435.
张翰林, 王俊陆, 宋宝燕. 融合衍生特征的时间序列事件分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 428-435.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024020202
数据集 | 采用频率/Hz | 样本数 | 类别数 | 实例 长度/s | 数据集 大小/MB |
---|---|---|---|---|---|
SleepEEG | 100 | 60 000 | 5 | 30 | 1 484.8 |
HAR | 50 | 10 299 | 6 | 11 | 46.2 |
BD | 64 000 | 1 280 | 4 | 4 | 10 639.3 |
Earthquake | 10~40 | 1 156 | 4 | 120 | 116.5 |
Tab. 1 Experimental dataset information
数据集 | 采用频率/Hz | 样本数 | 类别数 | 实例 长度/s | 数据集 大小/MB |
---|---|---|---|---|---|
SleepEEG | 100 | 60 000 | 5 | 30 | 1 484.8 |
HAR | 50 | 10 299 | 6 | 11 | 46.2 |
BD | 64 000 | 1 280 | 4 | 4 | 10 639.3 |
Earthquake | 10~40 | 1 156 | 4 | 120 | 116.5 |
模型 | 数据集 | 准确率 | 精确率 | 查全率 | F1值 | AUROC | AUPRC |
---|---|---|---|---|---|---|---|
TSEC-FDF | SleepEEG | 98.01 | 99.01 | 99.00 | 99.10 | 99.08 | 99.19 |
BD | 84.05 | 85.06 | 89.78 | 87.60 | 89.70 | 89.50 | |
HAR | 79.64 | 75.43 | 69.88 | 72.19 | 79.59 | 79.86 | |
Earthquake | 75.64 | 73.21 | 76.23 | 77.06 | 78.01 | 78.64 | |
KNN | SleepEEG | 85.25 | 86.39 | 64.31 | 67.91 | 64.34 | 62.79 |
BD | 67.66 | 65.00 | 68.21 | 64.42 | 81.90 | 52.31 | |
HAR | 75.34 | 74.39 | 76.38 | 73.28 | 74.09 | 77.28 | |
Earthquake | 29.94 | 31.01 | 27.51 | 28.33 | 45.29 | 50.17 | |
TF-C | SleepEEG | 94.95 | 94.56 | 89.08 | 91.49 | 98.11 | 97.03 |
BD | 78.24 | 79.82 | 80.11 | 79.91 | 90.52 | 78.61 | |
HAR | 75.29 | 71.08 | 67.23 | 68.22 | 70.31 | 76.19 | |
Earthquake | 68.34 | 65.36 | 61.24 | 63.31 | 68.77 | 69.13 | |
BL-HMM | SleepEEG | 90.74 | 92.39 | 91.77 | 93.21 | 95.34 | 92.19 |
BD | 61.29 | 58.18 | 59.87 | 62.31 | 65.98 | 71.39 | |
HAR | 61.30 | 58.94 | 57.61 | 62.04 | 65.49 | 66.99 | |
Earthquake | 61.57 | 62.39 | 59.71 | 58.66 | 60.39 | 62.60 | |
LB-SimTSC | SleepEEG | 67.13 | 69.06 | 64.88 | 72.87 | 69.35 | 74.56 |
BD | 56.29 | 49.36 | 51.71 | 56.73 | 54.00 | 57.09 | |
HAR | 51.60 | 52.77 | 48.19 | 50.61 | 51.45 | 53.16 | |
Earthquake | 41.30 | 40.23 | 45.76 | 48.73 | 48.61 | 49.77 |
Tab. 2 Comparison results of accuracy and other indicators of five models on different datasets
模型 | 数据集 | 准确率 | 精确率 | 查全率 | F1值 | AUROC | AUPRC |
---|---|---|---|---|---|---|---|
TSEC-FDF | SleepEEG | 98.01 | 99.01 | 99.00 | 99.10 | 99.08 | 99.19 |
BD | 84.05 | 85.06 | 89.78 | 87.60 | 89.70 | 89.50 | |
HAR | 79.64 | 75.43 | 69.88 | 72.19 | 79.59 | 79.86 | |
Earthquake | 75.64 | 73.21 | 76.23 | 77.06 | 78.01 | 78.64 | |
KNN | SleepEEG | 85.25 | 86.39 | 64.31 | 67.91 | 64.34 | 62.79 |
BD | 67.66 | 65.00 | 68.21 | 64.42 | 81.90 | 52.31 | |
HAR | 75.34 | 74.39 | 76.38 | 73.28 | 74.09 | 77.28 | |
Earthquake | 29.94 | 31.01 | 27.51 | 28.33 | 45.29 | 50.17 | |
TF-C | SleepEEG | 94.95 | 94.56 | 89.08 | 91.49 | 98.11 | 97.03 |
BD | 78.24 | 79.82 | 80.11 | 79.91 | 90.52 | 78.61 | |
HAR | 75.29 | 71.08 | 67.23 | 68.22 | 70.31 | 76.19 | |
Earthquake | 68.34 | 65.36 | 61.24 | 63.31 | 68.77 | 69.13 | |
BL-HMM | SleepEEG | 90.74 | 92.39 | 91.77 | 93.21 | 95.34 | 92.19 |
BD | 61.29 | 58.18 | 59.87 | 62.31 | 65.98 | 71.39 | |
HAR | 61.30 | 58.94 | 57.61 | 62.04 | 65.49 | 66.99 | |
Earthquake | 61.57 | 62.39 | 59.71 | 58.66 | 60.39 | 62.60 | |
LB-SimTSC | SleepEEG | 67.13 | 69.06 | 64.88 | 72.87 | 69.35 | 74.56 |
BD | 56.29 | 49.36 | 51.71 | 56.73 | 54.00 | 57.09 | |
HAR | 51.60 | 52.77 | 48.19 | 50.61 | 51.45 | 53.16 | |
Earthquake | 41.30 | 40.23 | 45.76 | 48.73 | 48.61 | 49.77 |
模型 | 对比模型 | 准确率 | 精确率 | 查全率 | F1值 | AUROC | AUPRC |
---|---|---|---|---|---|---|---|
TSEC-FDF | KNN | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.000 |
TF-C | 0.453 | 0.534 | 0.294 | 0.464 | 0.434 | 0.443 | |
BL-HMM | 0.011 | 0.019 | 0.031 | 0.036 | 0.014 | 0.026 | |
LB-SimTSC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
KNN | TSEC-FDF | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.000 |
TF-C | 0.014 | 0.013 | 0.012 | 0.008 | 0.009 | 0.001 | |
BL-HMM | 0.528 | 0.433 | 0.152 | 0.178 | 0.346 | 0.053 | |
LB-SimTSC | 0.085 | 0.145 | 0.303 | 0.545 | 0.063 | 0.341 | |
TF-C | TSEC-FDF | 0.453 | 0.534 | 0.294 | 0.464 | 0.434 | 0.443 |
KNN | 0.014 | 0.013 | 0.012 | 0.008 | 0.009 | 0.001 | |
BL-HMM | 0.062 | 0.076 | 0.251 | 0.159 | 0.082 | 0.132 | |
LB-SimTSC | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | |
BL-HMM | TSEC-FDF | 0.011 | 0.019 | 0.031 | 0.036 | 0.014 | 0.026 |
KNN | 0.528 | 0.433 | 0.152 | 0.178 | 0.346 | 0.053 | |
TF-C | 0.062 | 0.076 | 0.251 | 0.159 | 0.082 | 0.132 | |
LB-SimTSC | 0.021 | 0.028 | 0.016 | 0.054 | 0.007 | 0.005 | |
LB-SimTSC | TSEC-FDF | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
KNN | 0.085 | 0.145 | 0.303 | 0.545 | 0.063 | 0.341 | |
TF-C | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | |
BL-HMM | 0.021 | 0.028 | 0.016 | 0.054 | 0.007 | 0.005 |
Tab. 3 T-test analysis among different models on different experimental indicators(α<0.05 means remarkable)
模型 | 对比模型 | 准确率 | 精确率 | 查全率 | F1值 | AUROC | AUPRC |
---|---|---|---|---|---|---|---|
TSEC-FDF | KNN | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.000 |
TF-C | 0.453 | 0.534 | 0.294 | 0.464 | 0.434 | 0.443 | |
BL-HMM | 0.011 | 0.019 | 0.031 | 0.036 | 0.014 | 0.026 | |
LB-SimTSC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
KNN | TSEC-FDF | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.000 |
TF-C | 0.014 | 0.013 | 0.012 | 0.008 | 0.009 | 0.001 | |
BL-HMM | 0.528 | 0.433 | 0.152 | 0.178 | 0.346 | 0.053 | |
LB-SimTSC | 0.085 | 0.145 | 0.303 | 0.545 | 0.063 | 0.341 | |
TF-C | TSEC-FDF | 0.453 | 0.534 | 0.294 | 0.464 | 0.434 | 0.443 |
KNN | 0.014 | 0.013 | 0.012 | 0.008 | 0.009 | 0.001 | |
BL-HMM | 0.062 | 0.076 | 0.251 | 0.159 | 0.082 | 0.132 | |
LB-SimTSC | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | |
BL-HMM | TSEC-FDF | 0.011 | 0.019 | 0.031 | 0.036 | 0.014 | 0.026 |
KNN | 0.528 | 0.433 | 0.152 | 0.178 | 0.346 | 0.053 | |
TF-C | 0.062 | 0.076 | 0.251 | 0.159 | 0.082 | 0.132 | |
LB-SimTSC | 0.021 | 0.028 | 0.016 | 0.054 | 0.007 | 0.005 | |
LB-SimTSC | TSEC-FDF | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
KNN | 0.085 | 0.145 | 0.303 | 0.545 | 0.063 | 0.341 | |
TF-C | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | |
BL-HMM | 0.021 | 0.028 | 0.016 | 0.054 | 0.007 | 0.005 |
1 | KAUR P, JOSHI J C, AGGARWAL P. A Multi-Model Decision Support System (MM-DSS) for avalanche hazard prediction over North-West Himalaya[J]. Natural Hazards, 2022, 110(1): 563-585. |
2 | ELDELE E, CHEN Z, LIU C, et al. An attention-based deep learning approach for sleep stage classification with single-channel EEG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 809-818. |
3 | LIU J, PAN C, LEI F, et al. Fault prediction of bearings based on LSTM and statistical process analysis[J]. Reliability Engineering and System Safety, 2021, 214: No.107646. |
4 | JAIN P K, TIWARI A K. Heart monitoring systems: a review[J]. Computers in Biology and Medicine, 2014, 54: 1-13. |
5 | YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 3634-3640. |
6 | CHAI D, WANG L, YANG Q. Bike flow prediction with multi-graph convolutional networks[C]// Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2018: 397-400. |
7 | 宋凌云,马卓源,李战怀,等. 面向金融风险预测的时序图神经网络综述[J]. 软件学报, 2024, 35(8):3897-3922. |
SONG L Y, MA Z Y, LI Z H, et al. Review on temporal graph neural networks for financial risk prediction[J]. Journal of Software, 2024, 35(8):3897-3922. | |
8 | WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24. |
9 | JIA Z, LIN Y, WANG J, et al. Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1977-1986. |
10 | JIA Z, LIN Y, WANG J, et al. GraphSleepNet: adaptive spatial-temporal graph convolutional networks for sleep stage classification[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2020: 1324-1330. |
11 | ZAIDI T F, FAROOQ O. EEG sub-bands based sleep stages classification using Fourier Synchrosqueezed transform features[J]. Expert Systems with Applications, 2023, 212: No.118752. |
12 | DUAN Z, XU H, WANG Y, et al. Multivariate time-series classification with hierarchical variational graph pooling[J]. Neural Networks, 2022, 154: 481-490. |
13 | XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. [2024-05-08].. |
14 | ZHANG X, ZEMAN M, TSILIGKARIDIS T, et al. Graph-guided network for irregularly sampled multivariate time series[EB/OL]. [2024-05-08].. |
15 | ZHANG X, ZHAO Z, TSILIGKARIDIS T, et al. Self-supervised contrastive pre-training for time series via time-frequency consistency[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 3988-4003. |
16 | XI L, YUN Z, LIU H, et al. Semi-supervised time series classification model with self-supervised learning[J]. Engineering Applications of Artificial Intelligence, 2022, 116: No.105331. |
17 | XI W, JAIN A, ZHANG L, et al. LB-SimTSC: an efficient similarity-aware graph neural network for semi-supervised time series classification[EB/OL]. [2024-05-08].. |
18 | BRAEI M, WAGNER S. Anomaly detection in univariate time-series: a survey on the state-of-the-art[EB/OL]. [2024-05-08].. |
19 | ZOVKO I I. Topics in market microstructure[M]. Amsterdam: Amsterdam University Press, 2008:13-17. |
20 | 肖国庆,李雪琪,陈玥丹,等. 大规模图神经网络研究综述[J]. 计算机学报, 2024, 47(1):148-171. |
XIAO G Q, LI X Q, CHEN Y D, et al. A survey of large-scale graph neural networks[J]. Chinese Journal of Computers, 2024, 47(1):148-171. | |
21 | KELLER J M, GRAY M R, GIVENS J A. A fuzzy k-nearest neighbor algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(4): 580-585. |
22 | GHIMATGAR H, KAZEMI K, HELFROUSH M S, et al. Neonatal EEG sleep stage classification based on deep learning and HMM[J]. Journal of Neural Engineering, 2020, 17(3): No.036031. |
23 | ELDELE E, RAGAB M, CHEN Z, et al. Time-series representation learning via temporal and contextual contrasting[C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 2352-2359. |
[1] | Xueqiang LYU, Tao WANG, Xindong YOU, Ge XU. HTLR: named entity recognition framework with hierarchical fusion of multi-knowledge [J]. Journal of Computer Applications, 2025, 45(1): 40-47. |
[2] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. |
[3] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[4] | Chunxue ZHANG, Liqing QIU, Cheng’ai SUN, Caixia JING. Purchase behavior prediction model based on two-stage dynamic interest recognition [J]. Journal of Computer Applications, 2024, 44(8): 2365-2371. |
[5] | Xun YAO, Zhongzheng QIN, Jie YANG. Generative label adversarial text classification model [J]. Journal of Computer Applications, 2024, 44(6): 1781-1785. |
[6] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[7] | Junfeng SHEN, Xingchen ZHOU, Can TANG. Dual-channel sentiment analysis model based on improved prompt learning method [J]. Journal of Computer Applications, 2024, 44(6): 1796-1806. |
[8] | Doudou LI, Wanggen LI, Yichun XIA, Yang SHU, Kun GAO. Skeleton-based action recognition based on feature interaction and adaptive fusion [J]. Journal of Computer Applications, 2023, 43(8): 2581-2587. |
[9] | Jiaming HE, Jucheng YANG, Chao WU, Xiaoning YAN, Nenghua XU. Person re-identification method based on multi-modal graph convolutional neural network [J]. Journal of Computer Applications, 2023, 43(7): 2182-2189. |
[10] | Xiaoyu FAN, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI. Reconstruction algorithm for highly undersampled magnetic resonance images based on residual graph convolutional neural network [J]. Journal of Computer Applications, 2023, 43(4): 1261-1268. |
[11] | Rongjun CHEN, Xuanhui YAN, Chaocheng YANG. Fusion imaging-based recurrent capsule classification network for time series [J]. Journal of Computer Applications, 2023, 43(3): 692-699. |
[12] | Yinglü XUAN, Yuan WAN, Jiahui CHEN. Time series classification by LSTM based on multi-scale convolution and attention mechanism [J]. Journal of Computer Applications, 2022, 42(8): 2343-2352. |
[13] | Haojie CHEN, Jiangting FAN, Yong LIU. Solving dynamic traveling salesman problem by deep reinforcement learning [J]. Journal of Computer Applications, 2022, 42(4): 1194-1200. |
[14] | Xiaojie LI, Chaoran CUI, Guangle SONG, Yaxi SU, Tianze WU, Chunyun ZHANG. Stock trend prediction method based on temporal hypergraph convolutional neural network [J]. Journal of Computer Applications, 2022, 42(3): 797-803. |
[15] | Kun FU, Jinhui GAO, Xiaomeng ZHAO, Jianing LI. Topology optimization based graph convolutional network combining with global structural information [J]. Journal of Computer Applications, 2022, 42(2): 357-364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||