Journal of Computer Applications ›› 0, Vol. ›› Issue (): 370-374.DOI: 10.11772/j.issn.1001-9081.2024030273
• Frontier and comprehensive applications • Previous Articles Next Articles
Yuchun XU1, Jianjun XU2()
Received:
2024-03-15
Revised:
2024-05-09
Accepted:
2024-05-14
Online:
2025-01-24
Published:
2024-12-31
Contact:
Jianjun XU
通讯作者:
许建军
作者简介:
许裕纯(2000—),女,福建漳州人,硕士研究生,主要研究方向:机器学习、数据挖掘、运营管理CLC Number:
Yuchun XU, Jianjun XU. Automatic detection method of epileptic EEG based on residual network[J]. Journal of Computer Applications, 0, (): 370-374.
许裕纯, 许建军. 基于残差网络的癫痫脑电自动检测方法[J]. 《计算机应用》唯一官方网站, 0, (): 370-374.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030273
数据集类别 | 记录位置 | 身体状况 | 状态 |
---|---|---|---|
A | 大脑皮层 | 健康人 | 清醒状态下,眼睛睁开 |
B | 大脑皮层 | 健康人 | 清醒状态下,眼睛闭上 |
C | 侧半球海马结构 | 癫痫患者 | 患者无癫痫发作间期 |
D | 癫痫致病期 | 癫痫患者 | 患者无癫痫发作间期 |
E | 癫痫致病期 | 癫痫患者 | 患者发作期 |
数据集类别 | 记录位置 | 身体状况 | 状态 |
---|---|---|---|
A | 大脑皮层 | 健康人 | 清醒状态下,眼睛睁开 |
B | 大脑皮层 | 健康人 | 清醒状态下,眼睛闭上 |
C | 侧半球海马结构 | 癫痫患者 | 患者无癫痫发作间期 |
D | 癫痫致病期 | 癫痫患者 | 患者无癫痫发作间期 |
E | 癫痫致病期 | 癫痫患者 | 患者发作期 |
网络模块 | 网络层类型 | 输出神经元数 | 核大小 | Dropout |
---|---|---|---|---|
卷积块1 | Conv-1 | 176×64 | 3 | — |
Conv-2 | 174×64 | 3 | — | |
ReLU | 174×64 | — | — | |
BN | — | — | — | |
Maxpool | 58×64 | 3 | — | |
卷积块2 | Conv-1 | 56×128 | 3 | — |
Conv-2 | 56×128 | 3 | — | |
ReLU | 56×128 | — | — | |
BN | — | — | — | |
Maxpool | 19×128 | — | — | |
卷积块3 | Conv-1 | 17×512 | 3 | — |
Conv-2 | 17×512 | 3 | — | |
ReLU | 17×512 | — | — | |
BN | — | — | — | |
Maxpool | 6×512 | 3 | — | |
扁平化层 | Dropout | 3 072 | — | 0.15 |
Flatten | 3 072 | — | — | |
全连接层1 | Dense | 1 024 | — | — |
ReLU | — | — | — | |
Dropout | — | — | 0.40 | |
全连接层2 | Dense | 128 | — | — |
ReLU | — | — | — | |
Dropout | — | — | 0.50 | |
全连接层3 | Dense | 16 | — | — |
Softmax | — | — | — |
网络模块 | 网络层类型 | 输出神经元数 | 核大小 | Dropout |
---|---|---|---|---|
卷积块1 | Conv-1 | 176×64 | 3 | — |
Conv-2 | 174×64 | 3 | — | |
ReLU | 174×64 | — | — | |
BN | — | — | — | |
Maxpool | 58×64 | 3 | — | |
卷积块2 | Conv-1 | 56×128 | 3 | — |
Conv-2 | 56×128 | 3 | — | |
ReLU | 56×128 | — | — | |
BN | — | — | — | |
Maxpool | 19×128 | — | — | |
卷积块3 | Conv-1 | 17×512 | 3 | — |
Conv-2 | 17×512 | 3 | — | |
ReLU | 17×512 | — | — | |
BN | — | — | — | |
Maxpool | 6×512 | 3 | — | |
扁平化层 | Dropout | 3 072 | — | 0.15 |
Flatten | 3 072 | — | — | |
全连接层1 | Dense | 1 024 | — | — |
ReLU | — | — | — | |
Dropout | — | — | 0.40 | |
全连接层2 | Dense | 128 | — | — |
ReLU | — | — | — | |
Dropout | — | — | 0.50 | |
全连接层3 | Dense | 16 | — | — |
Softmax | — | — | — |
分类 | 组合 | acc | pre | rec | F1值 |
---|---|---|---|---|---|
二分类 | A vs. E | 99.46 | 99.22 | 99.20 | 99.56 |
B vs. E | 99.26 | 98.57 | 98.69 | 98.91 | |
C vs. E | 98.89 | 98.21 | 97.83 | 97.82 | |
D vs. E | 98.30 | 98.04 | 97.39 | 97.61 | |
AB vs. E | 99.21 | 98.86 | 99.01 | 99.39 | |
CD vs. E | 98.35 | 98.84 | 97.68 | 97.82 | |
ABCD vs. E | 98.49 | 98.21 | 98.38 | 98.26 | |
三分类 | A vs. C vs. E | 96.22 | 96.59 | 96.52 | 96.53 |
A vs. D vs. E | 95.28 | 95.48 | 95.28 | 96.37 | |
B vs. C vs. E | 97.45 | 97.54 | 97.45 | 98.41 | |
B vs. D vs. E | 97.44 | 96.21 | 97.38 | 97.43 | |
AB vs.CD vs. E | 95.76 | 96.32 | 95.77 | 96.27 | |
五分类 | A vs. B vs.C vs. D vs. E | 82.34 | 82.70 | 82.34 | 82.31 |
分类 | 组合 | acc | pre | rec | F1值 |
---|---|---|---|---|---|
二分类 | A vs. E | 99.46 | 99.22 | 99.20 | 99.56 |
B vs. E | 99.26 | 98.57 | 98.69 | 98.91 | |
C vs. E | 98.89 | 98.21 | 97.83 | 97.82 | |
D vs. E | 98.30 | 98.04 | 97.39 | 97.61 | |
AB vs. E | 99.21 | 98.86 | 99.01 | 99.39 | |
CD vs. E | 98.35 | 98.84 | 97.68 | 97.82 | |
ABCD vs. E | 98.49 | 98.21 | 98.38 | 98.26 | |
三分类 | A vs. C vs. E | 96.22 | 96.59 | 96.52 | 96.53 |
A vs. D vs. E | 95.28 | 95.48 | 95.28 | 96.37 | |
B vs. C vs. E | 97.45 | 97.54 | 97.45 | 98.41 | |
B vs. D vs. E | 97.44 | 96.21 | 97.38 | 97.43 | |
AB vs.CD vs. E | 95.76 | 96.32 | 95.77 | 96.27 | |
五分类 | A vs. B vs.C vs. D vs. E | 82.34 | 82.70 | 82.34 | 82.31 |
分类 | 组合 | 文献来源 | 方法 | 准确率 | 本文方法的准确率 |
---|---|---|---|---|---|
二分类 | A vs. E | 文献[ | 小波变换+ANN | 96.00 | 99.46 |
文献[ | 经验模态分解+DNN | 99.10 | |||
文献[ | CNN | 99.60 | |||
文献[ | 差分模块+CNN | 99.80 | |||
B vs. E | 文献[ | 置换熵+SVM | 82.90 | 99.26 | |
文献[ | 短时傅里叶变换 | 99.30 | |||
C vs. E | 文献[ | 置换熵+SVM | 88.00 | 98.89 | |
文献[ | CNN | 98.30 | |||
文献[ | 经验模态分解+DNN | 98.80 | |||
D vs. E | 文献[ | 置换熵+SVM | 79.90 | 98.30 | |
文献[ | ED-TSK-FC | 97.52 | |||
AB vs. E | 文献[ | 差分模块+ CNN | 98.40 | 99.21 | |
文献[ | DTCWT+GRNN | 99.20 | |||
CD vs. E | 文献[ | DTCWT+GRNN | 95.20 | 98.35 | |
文献[ | 1D-LBP+BayesNet | 97.00 | |||
文献[ | ED-TSK-FC | 97.14 | |||
ABCD vs. E | 文献[ | 离散小波+近似熵+SVM | 94.00 | 98.49 | |
三分类 | A vs. C vs. E | 文献[ | 经验模态分解+DNN | 96.30 | 96.22 |
A vs. D vs. E | 文献[ | 经验模态分解+谱特征+SVM | 84.50 | 95.28 | |
文献[ | 经验模态分解+DNN | 91.30 | |||
文献[ | 差分模块+CNN | 92.80 | |||
文献[ | DWT+K-means+MLPNN | 96.67 | |||
B vs. C vs. E | 文献[ | CWT+CNN | 98.67 | 97.45 | |
B vs. D vs. E | 文献[ | CNN | 88.70 | 97.44 | |
文献[ | HVD-LSTM | 96.00 | |||
AB vs. CD vs. E | 文献[ | 经验模态分解+谱特征+SVM | 83.60 | 95.76 | |
文献[ | DWT+K-means+MLPNN | 95.60 | |||
五分类 | A vs.B vs.C vs.D vs. E | 文献[ | 混合CNN-BiLSTM架构 | 78.89 | 82.34 |
文献[ | 连续小波变换+CNN | 76.40 | |||
文献[ | 时域信号+深层神经网络 | 80.00 |
分类 | 组合 | 文献来源 | 方法 | 准确率 | 本文方法的准确率 |
---|---|---|---|---|---|
二分类 | A vs. E | 文献[ | 小波变换+ANN | 96.00 | 99.46 |
文献[ | 经验模态分解+DNN | 99.10 | |||
文献[ | CNN | 99.60 | |||
文献[ | 差分模块+CNN | 99.80 | |||
B vs. E | 文献[ | 置换熵+SVM | 82.90 | 99.26 | |
文献[ | 短时傅里叶变换 | 99.30 | |||
C vs. E | 文献[ | 置换熵+SVM | 88.00 | 98.89 | |
文献[ | CNN | 98.30 | |||
文献[ | 经验模态分解+DNN | 98.80 | |||
D vs. E | 文献[ | 置换熵+SVM | 79.90 | 98.30 | |
文献[ | ED-TSK-FC | 97.52 | |||
AB vs. E | 文献[ | 差分模块+ CNN | 98.40 | 99.21 | |
文献[ | DTCWT+GRNN | 99.20 | |||
CD vs. E | 文献[ | DTCWT+GRNN | 95.20 | 98.35 | |
文献[ | 1D-LBP+BayesNet | 97.00 | |||
文献[ | ED-TSK-FC | 97.14 | |||
ABCD vs. E | 文献[ | 离散小波+近似熵+SVM | 94.00 | 98.49 | |
三分类 | A vs. C vs. E | 文献[ | 经验模态分解+DNN | 96.30 | 96.22 |
A vs. D vs. E | 文献[ | 经验模态分解+谱特征+SVM | 84.50 | 95.28 | |
文献[ | 经验模态分解+DNN | 91.30 | |||
文献[ | 差分模块+CNN | 92.80 | |||
文献[ | DWT+K-means+MLPNN | 96.67 | |||
B vs. C vs. E | 文献[ | CWT+CNN | 98.67 | 97.45 | |
B vs. D vs. E | 文献[ | CNN | 88.70 | 97.44 | |
文献[ | HVD-LSTM | 96.00 | |||
AB vs. CD vs. E | 文献[ | 经验模态分解+谱特征+SVM | 83.60 | 95.76 | |
文献[ | DWT+K-means+MLPNN | 95.60 | |||
五分类 | A vs.B vs.C vs.D vs. E | 文献[ | 混合CNN-BiLSTM架构 | 78.89 | 82.34 |
文献[ | 连续小波变换+CNN | 76.40 | |||
文献[ | 时域信号+深层神经网络 | 80.00 |
1 | 王玉,周卫东,李淑芳,等. 脑电信号的分形截距特征分析及在癫痫检测中的应用[J]. 中国生物医学工程学报, 2011, 30(4):562-566. |
2 | CASSON A J, YATES D C, SMITH S J M, et al. Wearable electroencephalography [J]. IEEE Transactions on Engineering in Medicine and Biology Magazine, 2010, 29(3):44-56. |
3 | ABDULWAHHAB H A, ABDULAAL A H, AL-GHRAIRI A H T, et al. Detection of epileptic seizure using EEG signals analysis based on deep learning techniques [J]. Chaos, Solitons and Fractals, 2024, 181: No.114700. |
4 | 张瑞,宋江玲,胡文凤. 癫痫脑电的特征提取方法综述[J]. 西北大学学报(自然科学版), 2016, 46(6):781-788. |
5 | RASHED-AL-MAHFUZ M, MONI M A, UDDIN S, et al. A deep convolutional neural network method to detect seizures and characteristic frequencies using epileptic ElectroEncephaloGram (EEG) data [J]. IEEE Journal of Translational Engineering in Health and Medicine, 2021, 9: No.2000112. |
6 | IŞIK H, SEZER E. Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman artificial neural networks and wavelet transform [J]. Journal of Medical Systems, 2012, 36:1-13 |
7 | NICOLAOU N, GEORGIOU J. Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines [J]. Expert System with Applications, 2012, 39(1):202-209. |
8 | ORHAN U, HEKIM M, OZER M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model[J]. Expert System with Applications, 2011, 38(10):13475-13481. |
9 | SWAMI P, GANDHI T K, PANIGRAHI B K, et al. A novel robust diagnostic model to detect seizures in electroencephalography [J]. Expert Systems with Applications, 2016, 56: 116-130. |
10 | ACHARYA U R, OH S L, HAGIWARA Y, et al. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J]. Computers in Biology and Medicine, 2018, 100:270-278. |
11 | SAN-SEGUNDO R, GIL-MARTÍN M, D'HARO-ENRIQUEZ L F, et al. Classification of epileptic EEG recordings using signal transforms and convolutional neural networks [J]. Computers in Biology and Medicine, 2019, 109:148-158. |
12 | LIU J, WOODSON B. Deep learning classification for epilepsy detection using a single channel electroencephalography [C]// Proceedings of the 3rd International Conference on Deep Learning Technologies. New York: ACM, 2019:23-26. |
13 | 潘奕竹,沈娜. 离散差分模块在癫痫脑电分类中的应用[J]. 电子测量技术, 2021, 44(1):70-75. |
14 | 王振宇,向泽锐,支锦亦. 离散小波变换和自编码器耦合的脑电信号异常检测方法[J]. 北京邮电大学学报, 2023, 47(2):66-73. |
15 | ARAVIND BRITTO K R, SARAVANAN S, MATHIVANAN S K, et al. A multi-dimensional hybrid CNN-BiLSTM framework for epileptic seizure detection using electroencephalogram signal scrutiny [J]. Systems and Soft Computing, 2023, 5: No.200062. |
16 | 李彦冬,郝宗波,雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9):2508-2515. |
17 | 费洪磊,袁琦,郑玉叶. 基于深度学习的癫痫脑电不平衡分类方法[J]. 仪器仪表学报, 2021, 42(3):231-240. |
18 | 郭玥秀,杨伟,刘琦,等. 残差网络研究综述[J]. 计算机应用研究, 2020, 37(5):1292-1297. |
19 | ANDRZEJAK R G, LEHNERTZ K, MORMANN F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state [J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2001, 64(6): No.061907. |
20 | SAMIEE K, KOVÁCS P, GABBOUJ M. Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform [J]. IEEE Transactions on Bio-Medical Engineering, 2015, 62(2): 541-552. |
21 | 蒋云良,翁江玮,申情,等. 基于增强深度特征和TSK模糊分类器的癫痫脑电信号识别[J]. 控制与决策, 2023, 38(1): 171-180. |
22 | KAYA Y, UYAR M, TEKIN R, et al. 1D-local binary pattern based feature extraction for classification of epileptic EEG signals [J]. Applied Mathematics and Computation, 2014, 243:209-219. |
23 | KUMAR Y, DEWAL M L, ANAND R S. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine [J]. Neurocomputing, 2014, 133:271-279. |
24 | RIAZ F, HASSAN A, REHMAN S, et al. EMD-based temporal and spectral features for the classification of EEG signals using supervised learning [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(1):28-35. |
25 | TÜRK Ö, ÖZERDEM S M. Epilepsy detection by using scalogram based convolutional neural network from EEG signals [J]. Brain Sciences, 2019, 9(5): No.115. |
26 | KHAN P, KHAN Y, KUMAR S, et al. HVD-LSTM based recognition of epileptic seizures and normal human activity [J]. Computers in Biology and Medicine, 2021, 136: No.104684. |
27 | MAO W L, FATHURRAHMAN H I K, LEE Y, et al. EEG dataset classification using CNN method [J]. Journal of Physics: Conference Series, 2020, 1456: No.012017. |
28 | GUHA A, GHOSH S, ROY A, et al. Epileptic seizure recognition using deep neural network [C]// Emerging Technology in Modelling and Graphics: Proceedings of IEM Graph 2018, AISC 937. Singapore: Springer, 2020: 21-28. |
[1] | Baohua YUAN, Jialu CHEN, Huan WANG. Medical image segmentation network integrating multi-scale semantics and parallel double-branch [J]. Journal of Computer Applications, 2025, 45(3): 988-995. |
[2] | Haijun GENG, Yun DONG, Zhiguo HU, Haotian CHI, Jing YANG, Xia YIN. Encrypted traffic classification method based on Attention-1DCNN-CE [J]. Journal of Computer Applications, 2025, 45(3): 872-882. |
[3] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. |
[4] | Hanlin ZHANG, Junlu WANG, Baoyan SONG. Time series event classification method fused with derived features [J]. Journal of Computer Applications, 2025, 45(2): 428-435. |
[5] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[6] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[7] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[8] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[9] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[10] | Chunxue ZHANG, Liqing QIU, Cheng’ai SUN, Caixia JING. Purchase behavior prediction model based on two-stage dynamic interest recognition [J]. Journal of Computer Applications, 2024, 44(8): 2365-2371. |
[11] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[12] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[13] | Hao CHAO, Shuqi FENG, Yongli LIU. Convolutional recurrent neural network optimized by multiple context vectors in EEG-based emotion recognition [J]. Journal of Computer Applications, 2024, 44(7): 2041-2046. |
[14] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[15] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||