Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1130-1138.DOI: 10.11772/j.issn.1001-9081.2024040417
• Artificial intelligence • Previous Articles Next Articles
Meirong DING, Jinxin ZHUO, Yuwu LU(), Qinglong LIU, Jicong LANG
Received:
2024-04-09
Revised:
2024-06-27
Accepted:
2024-07-02
Online:
2025-04-08
Published:
2025-04-10
Contact:
Yuwu LU
About author:
DING Meirong, born in 1972, M. S., associate professor. Her research interests include artificial intelligence, natural language processing, intelligent software technology.Supported by:
通讯作者:
陆玉武
作者简介:
丁美荣(1972—),女,内蒙古巴彦淖尔人,副教授,硕士,CCF高级会员,主要研究方向:人工智能、自然语言处理、智能软件技术;基金资助:
CLC Number:
Meirong DING, Jinxin ZHUO, Yuwu LU, Qinglong LIU, Jicong LANG. Domain adaptation integrating environment label smoothing and nuclear norm discrepancy[J]. Journal of Computer Applications, 2025, 45(4): 1130-1138.
丁美荣, 卓金鑫, 陆玉武, 刘庆龙, 郎济聪. 融合环境标签平滑与核范数差异的领域自适应[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1130-1138.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040417
数据集 | 包含领域 | 样本数 | 类别数 |
---|---|---|---|
Office-31 | Amazon(A)、WebCam (W)、Dslr(D) | 4 110 | 31 |
Office-Home | Art (Ar)、Clipart (Cl)、 Product (Pr)、Real World (Rw) | 15 500 | 65 |
MiniDomainNet | Clipart(Clp)、Painting(Pnt)、 Real(Rel)、Sketch(Skt) | 140 006 | 126 |
Tab. 1 Statistical information of experimental datasets
数据集 | 包含领域 | 样本数 | 类别数 |
---|---|---|---|
Office-31 | Amazon(A)、WebCam (W)、Dslr(D) | 4 110 | 31 |
Office-Home | Art (Ar)、Clipart (Cl)、 Product (Pr)、Real World (Rw) | 15 500 | 65 |
MiniDomainNet | Clipart(Clp)、Painting(Pnt)、 Real(Rel)、Sketch(Skt) | 140 006 | 126 |
SDAT | ELS | NWD | 平均精确度 |
---|---|---|---|
√ | 71.8 | ||
√ | √ | 72.6 | |
√ | √ | √ | 73.0 |
Tab. 2 Ablation experimental results on Office-Home dataset
SDAT | ELS | NWD | 平均精确度 |
---|---|---|---|
√ | 71.8 | ||
√ | √ | 72.6 | |
√ | √ | √ | 73.0 |
模型 | A→W | D→W | W→D | A→D | D→A | W→A | 平均值 |
---|---|---|---|---|---|---|---|
ERM[ | 75.8 | 95.5 | 99.0 | 79.3 | 63.6 | 63.8 | 79.5 |
ADDA[ | 94.6 | 97.5 | 99.7 | 90.0 | 69.6 | 72.5 | 87.3 |
CDAN[ | 93.8 | 98.5 | 100.0 | 89.9 | 73.4 | 70.4 | 87.7 |
MCC[ | 94.1 | 98.4 | 99.8 | 95.6 | 75.5 | 74.2 | 89.6 |
DANN[ | 91.3 | 97.2 | 100.0 | 84.1 | 72.9 | 73.6 | 86.5 |
DANN+ELS[ | 92.2 | 98.5 | 100.0 | 85.9 | 74.3 | 75.3 | 87.7 |
SDAT[ | 92.7 | 98.9 | 100.0 | 93.0 | 78.5 | 75.7 | 89.8 |
SDAT+ELS[ | 93.6 | 99.0 | 100.0 | 93.4 | 78.7 | 77.5 | 90.4 |
ELSND | 94.3 | 99.2 | 100.0 | 93.8 | 78.9 | 78.0 | 90.7 |
Tab. 3 Accuracy on Office-31 dataset for unsupervised domain adaptation
模型 | A→W | D→W | W→D | A→D | D→A | W→A | 平均值 |
---|---|---|---|---|---|---|---|
ERM[ | 75.8 | 95.5 | 99.0 | 79.3 | 63.6 | 63.8 | 79.5 |
ADDA[ | 94.6 | 97.5 | 99.7 | 90.0 | 69.6 | 72.5 | 87.3 |
CDAN[ | 93.8 | 98.5 | 100.0 | 89.9 | 73.4 | 70.4 | 87.7 |
MCC[ | 94.1 | 98.4 | 99.8 | 95.6 | 75.5 | 74.2 | 89.6 |
DANN[ | 91.3 | 97.2 | 100.0 | 84.1 | 72.9 | 73.6 | 86.5 |
DANN+ELS[ | 92.2 | 98.5 | 100.0 | 85.9 | 74.3 | 75.3 | 87.7 |
SDAT[ | 92.7 | 98.9 | 100.0 | 93.0 | 78.5 | 75.7 | 89.8 |
SDAT+ELS[ | 93.6 | 99.0 | 100.0 | 93.4 | 78.7 | 77.5 | 90.4 |
ELSND | 94.3 | 99.2 | 100.0 | 93.8 | 78.9 | 78.0 | 90.7 |
模型 | Ar→Cl | Ar→Pr | Ar→Rw | Cl→Ar | Cl→Pr | Cl→Rw | Pr→Ar | Pr→Cl | Pr→Rw | Rw→Ar | Rw→Cl | Rw→Pr | 平均值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50[ | 34.9 | 50.0 | 58.0 | 37.4 | 41.9 | 46.2 | 38.5 | 31.2 | 60.4 | 53.9 | 41.2 | 59.9 | 46.1 |
DANN[ | 45.6 | 59.3 | 70.1 | 47.0 | 58.5 | 60.9 | 46.1 | 43.7 | 68.5 | 63.2 | 51.8 | 76.8 | 57.6 |
CDAN[ | 49.0 | 69.3 | 74.5 | 54.4 | 66.0 | 68.4 | 55.6 | 48.3 | 75.9 | 68.4 | 55.4 | 80.5 | 63.8 |
MMD[ | 54.9 | 73.7 | 77.8 | 60.0 | 71.4 | 71.8 | 61.2 | 53.6 | 78.1 | 72.5 | 60.2 | 82.3 | 68.1 |
f-DAL[ | 56.7 | 77.0 | 81.1 | 63.1 | 72.2 | 75.9 | 64.5 | 54.4 | 81.0 | 72.3 | 58.4 | 83.7 | 70.0 |
SRDC[ | 52.3 | 76.3 | 81.0 | 69.5 | 76.2 | 78.0 | 68.7 | 53.8 | 81.7 | 76.3 | 57.1 | 85.0 | 71.3 |
SDAT[ | 57.8 | 77.4 | 82.2 | 66.5 | 76.6 | 76.2 | 63.3 | 57.0 | 82.2 | 75.3 | 62.6 | 85.2 | 71.8 |
SDAT+ELS[ | 58.2 | 79.7 | 82.5 | 67.5 | 77.2 | 77.2 | 64.6 | 57.9 | 82.2 | 75.4 | 63.1 | 85.5 | 72.6 |
ELSND | 58.5 | 79.9 | 82.6 | 67.9 | 77.8 | 77.5 | 65.3 | 58.7 | 82.0 | 76.6 | 64.2 | 85.6 | 73.0 |
Tab. 4 Accuracy on Office-Home dataset for unsupervised domain adaptation
模型 | Ar→Cl | Ar→Pr | Ar→Rw | Cl→Ar | Cl→Pr | Cl→Rw | Pr→Ar | Pr→Cl | Pr→Rw | Rw→Ar | Rw→Cl | Rw→Pr | 平均值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50[ | 34.9 | 50.0 | 58.0 | 37.4 | 41.9 | 46.2 | 38.5 | 31.2 | 60.4 | 53.9 | 41.2 | 59.9 | 46.1 |
DANN[ | 45.6 | 59.3 | 70.1 | 47.0 | 58.5 | 60.9 | 46.1 | 43.7 | 68.5 | 63.2 | 51.8 | 76.8 | 57.6 |
CDAN[ | 49.0 | 69.3 | 74.5 | 54.4 | 66.0 | 68.4 | 55.6 | 48.3 | 75.9 | 68.4 | 55.4 | 80.5 | 63.8 |
MMD[ | 54.9 | 73.7 | 77.8 | 60.0 | 71.4 | 71.8 | 61.2 | 53.6 | 78.1 | 72.5 | 60.2 | 82.3 | 68.1 |
f-DAL[ | 56.7 | 77.0 | 81.1 | 63.1 | 72.2 | 75.9 | 64.5 | 54.4 | 81.0 | 72.3 | 58.4 | 83.7 | 70.0 |
SRDC[ | 52.3 | 76.3 | 81.0 | 69.5 | 76.2 | 78.0 | 68.7 | 53.8 | 81.7 | 76.3 | 57.1 | 85.0 | 71.3 |
SDAT[ | 57.8 | 77.4 | 82.2 | 66.5 | 76.6 | 76.2 | 63.3 | 57.0 | 82.2 | 75.3 | 62.6 | 85.2 | 71.8 |
SDAT+ELS[ | 58.2 | 79.7 | 82.5 | 67.5 | 77.2 | 77.2 | 64.6 | 57.9 | 82.2 | 75.4 | 63.1 | 85.5 | 72.6 |
ELSND | 58.5 | 79.9 | 82.6 | 67.9 | 77.8 | 77.5 | 65.3 | 58.7 | 82.0 | 76.6 | 64.2 | 85.6 | 73.0 |
模型 | Clp | Pnt | Rel | Skt | 平均值 |
---|---|---|---|---|---|
DANN[ | 65.55 | 46.27 | 58.68 | 47.88 | 54.60 |
DCTN[ | 62.06 | 48.79 | 58.85 | 48.25 | 54.49 |
MCD[ | 62.91 | 45.77 | 57.57 | 45.88 | 53.03 |
MME[ | 68.09 | 47.14 | 63.33 | 43.50 | 55.52 |
DAEL[ | 69.95 | 55.13 | 66.11 | 55.72 | 61.73 |
Oracle[ | 72.59 | 60.53 | 80.47 | 63.44 | 69.26 |
DomainAdaptor-Aug[ | — | — | — | — | 73.82 |
ELSND | 76.50 | 73.50 | 79.90 | 70.30 | 75.05 |
Tab. 5 Accuracies of different models on MiniDomainNet dataset
模型 | Clp | Pnt | Rel | Skt | 平均值 |
---|---|---|---|---|---|
DANN[ | 65.55 | 46.27 | 58.68 | 47.88 | 54.60 |
DCTN[ | 62.06 | 48.79 | 58.85 | 48.25 | 54.49 |
MCD[ | 62.91 | 45.77 | 57.57 | 45.88 | 53.03 |
MME[ | 68.09 | 47.14 | 63.33 | 43.50 | 55.52 |
DAEL[ | 69.95 | 55.13 | 66.11 | 55.72 | 61.73 |
Oracle[ | 72.59 | 60.53 | 80.47 | 63.44 | 69.26 |
DomainAdaptor-Aug[ | — | — | — | — | 73.82 |
ELSND | 76.50 | 73.50 | 79.90 | 70.30 | 75.05 |
1 | PEI Z, CAO Z, LONG M, et al. Multi-adversarial domain adaptation[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 3934-3941. |
2 | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 214-223. |
3 | MESCHEDER L, GEIGER A, NOWOZIN S. Which training methods for GANs do actually converge?[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 3481-3490. |
4 | ZHANG Y, WANG X, LIANG J, et al. Free lunch for domain adversarial training: environment label smoothing[EB/OL]. [2024-06-25]. . |
5 | LONG M, CAO Z, WANG J, et al. Conditional adversarial domain adaptation[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 1647-1657. |
6 | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17: 1-35. |
7 | KURMI V K, NAMBOODIRI V P. Looking back at labels: a class based domain adaptation technique[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. |
8 | TANG H, JIA K. Discriminative adversarial domain adaptation[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 5940-5947. |
9 | LU Z, YANG Y, ZHU X, et al. Stochastic classifiers for unsupervised domain adaptation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9108-9117. |
10 | LI S, LV F, XIE B, et al. Bi-classifier determinacy maximization for unsupervised domain adaptation[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 8455-8464. |
11 | GAO Z, ZHANG S, HUANG K, et al. Gradient distribution alignment certificates better adversarial domain adaptation[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8917-8926. |
12 | CHEN L, CHEN H, WEI Z, et al. Reusing the task-specific classifier as a discriminator: discriminator-free adversarial domain adaptation[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7171-7180. |
13 | ZHANG Y, TANG H, JIA K, et al. Domain-symmetric networks for adversarial domain adaptation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5026-5035. |
14 | SHEN J, QU Y, ZHANG W, et al. Wasserstein distance guided representation learning for domain adaptation[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 4058-4065. |
15 | 刘皓,洪宇,朱巧明. 无监督的领域自适应机器阅读理解方法[J]. 计算机学报, 2022, 45(10): 2133-2150. |
LIU H, HONG Y, ZHU Q M. Unsupervised domain adaptive machine reading comprehension method[J]. Chinese Journal of Computers, 2022, 45(10): 2133-2150. | |
16 | LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 97-105. |
17 | TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[EB/OL]. [2024-01-01].. |
18 | ZHANG Y, LIU T, LONG M, et al. Bridging theory and algorithm for domain adaptation[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 7404-7413. |
19 | DU Z, LI J, SU H, et al. Cross-domain gradient discrepancy minimization for unsupervised domain adaptation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern recognition. Piscataway: IEEE, 2021: 3936-3945. |
20 | LONG M, ZHU H, WANG J, et al. Deep transfer learning with joint adaptation networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 2208-2217. |
21 | ZHAO S, YUE X, ZHANG S, et al. A review of single-source deep unsupervised visual domain adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 473-493. |
22 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014:2672-2680. |
23 | MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. [2024-01-01].. |
24 | SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3723-3732. |
25 | LEE C Y, BATRA T, BAIG M H, et al. Sliced Wasserstein discrepancy for unsupervised domain adaptation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10277-10287. |
26 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. |
27 | WARDE-FARLEY D, GOODFELLOW I. Adversarial perturbations of deep neural networks[M]// HAZAQN T, PAPANDREOU G, TARLOW D. Perturbations, optimization, and statistics. Cambridge: MIT Press, 2016: 311-332. |
28 | MÜLLER R, KORNBLITH S, HINTON G E. When does label smoothing help?[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 4694-4703. |
29 | LUKASIK M, BHOJANAPALLI S, MENON A K, et al. Does label smoothing mitigate label noise?[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 6448-6458. |
30 | RECHT B, FAZEL M, PARRILO P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52(3): 471-501. |
31 | GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 2862-2869. |
32 | CUI S, WANG S, ZHUO J, et al. Towards discriminability and diversity: batch nuclear-norm maximization under label insufficient situations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3940-3949. |
33 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
34 | SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains[C]// Proceedings of the 2010 European Conference on Computer Vision, LNCS 6314. Berlin: Springer, 2010: 213-226. |
35 | VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5385-5394. |
36 | ZHOU K, YANG Y, QIAO Y, et al. Domain adaptive ensemble learning[J]. IEEE Transactions on Image Processing, 2021, 30: 8008-8018. |
37 | RANGWANI H, AITHAL S K, MISHRA M, et al. A closer look at smoothness in domain adversarial training[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 18378-18399. |
38 | VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 2000. |
39 | TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2962-2971. |
40 | JIN Y, WANG X, LONG M, et al. Minimum class confusion for versatile domain adaptation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12366. Cham: Springer, 2020: 464-480. |
41 | ACUNA D, ZHANG G, LAW M T, et al. f-Domain adversarial learning: theory and algorithms[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 66-75. |
42 | TANG H, CHEN K, JIA K. Unsupervised domain adaptation via structurally regularized deep clustering[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8722-8732. |
43 | XU R, CHEN Z, ZUO W, et al. Deep cocktail network: multi-source unsupervised domain adaptation with category shift[C]// Proceedings of the 2018 IEEECVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3964-3973. |
44 | SAITO K, KIM D, SCLAROFF S, et al. Semi-supervised domain adaptation via minimax entropy[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8049-8057. |
45 | ZHANG J, QI L, SHI Y, et al. DomainAdaptor: a novel approach to test-time adaptation[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 18925-18935. |
Found:This work is partially supported by National Natural Science Foundation of China (62176162); Guangdong Provincial Natural Science Foundation(2022A1515140099, 2023A1515012875). |
[1] | Liwei ZHANG, Quan LIANG, Yutao HU, Qiaole ZHU. Channel shuffle attention mechanism based on group convolution [J]. Journal of Computer Applications, 2025, 45(4): 1069-1076. |
[2] | Junxiu AN, Linwang YANG, Yuan LIU. Unsupervised text style transfer based on semantic perception of proximity [J]. Journal of Computer Applications, 2025, 45(4): 1139-1147. |
[3] | Yiqin YAN, Chuan LUO, Tianrui LI, Hongmei CHEN. Cross-domain few-shot classification model based on relation network and Vision Transformer [J]. Journal of Computer Applications, 2025, 45(4): 1095-1103. |
[4] | Danni DING, Bo PENG, Xi WU. VPNet: fatty liver ultrasound image classification method inspired by ventral pathway [J]. Journal of Computer Applications, 2025, 45(2): 662-669. |
[5] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
[6] | Chunxia LIU, Hanying XU, Gaimei GAO, Weichao DANG, Zilu LI. Smart contract vulnerability detection method based on echo state network [J]. Journal of Computer Applications, 2025, 45(1): 153-161. |
[7] | Zongsheng ZHENG, Jia DU, Yuhe CHENG, Zecheng ZHAO, Yuewei ZHANG, Xulong WANG. Cross-modal dual-stream alternating interactive network for infrared-visible image classification [J]. Journal of Computer Applications, 2025, 45(1): 275-283. |
[8] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[9] | Feiyu ZHAI, Handa MA. Hybrid classical-quantum classification model based on DenseNet [J]. Journal of Computer Applications, 2024, 44(6): 1905-1910. |
[10] | Wangjun SHI, Jing WANG, Xiaojun NING, Youfang LIN. Sleep stage classification model by meta transfer learning in few-shot scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1445-1451. |
[11] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[12] | Bin XIAO, Mo YANG, Min WANG, Guangyuan QIN, Huan LI. Domain generalization method of phase-frequency fusion from independent perspective [J]. Journal of Computer Applications, 2024, 44(4): 1002-1009. |
[13] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[14] | Xue LI, Guangle YAO, Honghui WANG, Jun LI, Haoran ZHOU, Shaoze YE. Remote sensing image classification based on sample incremental learning [J]. Journal of Computer Applications, 2024, 44(3): 732-736. |
[15] | Xuan CAO, Tianjian LUO. Dynamic multi-domain adversarial learning method for cross-subject motor imagery EEG signals [J]. Journal of Computer Applications, 2024, 44(2): 645-653. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||