Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1061-1068.DOI: 10.11772/j.issn.1001-9081.2024030393
• Artificial intelligence • Previous Articles Next Articles
Weichao DANG, Xinyu WEN(), Gaimei GAO, Chunxia LIU
Received:
2024-04-08
Revised:
2024-05-26
Accepted:
2024-05-29
Online:
2024-08-15
Published:
2025-04-10
Contact:
Xinyu WEN
About author:
DANG Weichao, born in 1974, Ph. D., associate professor. His research interests include intelligent computing, software reliability.Supported by:
通讯作者:
温鑫瑜
作者简介:
党伟超(1974—),男,山西运城人,副教授,博士,CCF会员,主要研究方向:智能计算、软件可靠性基金资助:
CLC Number:
Weichao DANG, Xinyu WEN, Gaimei GAO, Chunxia LIU. Multi-view and multi-scale contrastive learning for graph collaborative filtering[J]. Journal of Computer Applications, 2025, 45(4): 1061-1068.
党伟超, 温鑫瑜, 高改梅, 刘春霞. 基于多视图多尺度对比学习的图协同过滤[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1061-1068.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030393
数据集 | 用户数 | 项目数 | 交互数 | 稀疏度/% |
---|---|---|---|---|
Gowalla | 50 821 | 57 440 | 1 172 425 | 0.040 |
Amazon-book | 78 578 | 77 801 | 2 240 156 | 0.037 |
Tmall | 47 939 | 41 390 | 2 357 450 | 0.119 |
Tab. 1 Statistical information of experimental datasets
数据集 | 用户数 | 项目数 | 交互数 | 稀疏度/% |
---|---|---|---|---|
Gowalla | 50 821 | 57 440 | 1 172 425 | 0.040 |
Amazon-book | 78 578 | 77 801 | 2 240 156 | 0.037 |
Tmall | 47 939 | 41 390 | 2 357 450 | 0.119 |
模型 | Gowalla | Amazon-book | Tmall | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R@20 | R@40 | N@20 | N@40 | R@20 | R@40 | N@20 | N@40 | R@20 | R@40 | N@20 | N@40 | |
NCF | 0.124 7 | 0.191 0 | 0.065 9 | 0.083 2 | 0.046 8 | 0.077 1 | 0.033 6 | 0.043 8 | 0.038 3 | 0.064 7 | 0.025 2 | 0.034 4 |
AutoR | 0.140 9 | 0.214 2 | 0.071 6 | 0.090 5 | 0.054 6 | 0.091 4 | 0.035 4 | 0.048 2 | 0.033 6 | 0.061 1 | 0.020 3 | 0.029 5 |
NGCF | 0.141 3 | 0.207 2 | 0.081 3 | 0.098 7 | 0.053 2 | 0.086 6 | 0.038 8 | 0.050 1 | 0.042 0 | 0.075 1 | 0.025 0 | 0.036 5 |
LightGCN | 0.179 9 | 0.257 7 | 0.105 3 | 0.125 5 | 0.073 2 | 0.114 8 | 0.054 4 | 0.068 1 | 0.055 5 | 0.089 5 | 0.038 1 | 0.049 9 |
DGCF | 0.178 4 | 0.251 5 | 0.106 9 | 0.125 9 | 0.068 8 | 0.107 3 | 0.051 3 | 0.064 0 | 0.054 4 | 0.086 7 | 0.037 2 | 0.048 4 |
DGCL | 0.179 3 | 0.248 3 | 0.106 7 | 0.124 7 | 0.067 7 | 0.105 7 | 0.050 6 | 0.063 1 | 0.052 6 | 0.084 5 | 0.035 9 | 0.046 9 |
SGL-ED | 0.180 9 | 0.255 9 | 0.106 7 | 0.126 2 | 0.077 4 | 0.120 4 | 0.057 8 | 0.071 9 | 0.057 4 | 0.091 9 | 0.039 3 | 0.051 3 |
SGL-ND | 0.181 4 | 0.258 9 | 0.106 5 | 0.126 7 | 0.072 2 | 0.112 1 | 0.054 2 | 0.067 4 | 0.055 3 | 0.088 5 | 0.037 9 | 0.049 4 |
HCCF | 0.181 8 | 0.260 1 | 0.106 1 | 0.126 5 | 0.082 4 | 0.128 2 | 0.062 5 | 0.077 6 | 0.062 3 | 0.098 6 | 0.042 5 | 0.055 2 |
LightGCL | 0.182 5 | 0.260 1 | 0.107 7 | 0.128 0 | 0.083 6 | 0.128 0 | 0.064 3 | 0.079 0 | 0.063 2 | 0.097 1 | 0.044 4 | 0.056 2 |
DCCF | ||||||||||||
MVMSCL | 0.198 3 | 0.274 2 | 0.117 5 | 0.137 4 | 0.101 8 | 0.148 9 | 0.080 2 | 0.099 5 | 0.073 5 | 0.113 2 | 0.052 3 | 0.066 0 |
Tab. 2 Performance comparison of different models on public datasets
模型 | Gowalla | Amazon-book | Tmall | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R@20 | R@40 | N@20 | N@40 | R@20 | R@40 | N@20 | N@40 | R@20 | R@40 | N@20 | N@40 | |
NCF | 0.124 7 | 0.191 0 | 0.065 9 | 0.083 2 | 0.046 8 | 0.077 1 | 0.033 6 | 0.043 8 | 0.038 3 | 0.064 7 | 0.025 2 | 0.034 4 |
AutoR | 0.140 9 | 0.214 2 | 0.071 6 | 0.090 5 | 0.054 6 | 0.091 4 | 0.035 4 | 0.048 2 | 0.033 6 | 0.061 1 | 0.020 3 | 0.029 5 |
NGCF | 0.141 3 | 0.207 2 | 0.081 3 | 0.098 7 | 0.053 2 | 0.086 6 | 0.038 8 | 0.050 1 | 0.042 0 | 0.075 1 | 0.025 0 | 0.036 5 |
LightGCN | 0.179 9 | 0.257 7 | 0.105 3 | 0.125 5 | 0.073 2 | 0.114 8 | 0.054 4 | 0.068 1 | 0.055 5 | 0.089 5 | 0.038 1 | 0.049 9 |
DGCF | 0.178 4 | 0.251 5 | 0.106 9 | 0.125 9 | 0.068 8 | 0.107 3 | 0.051 3 | 0.064 0 | 0.054 4 | 0.086 7 | 0.037 2 | 0.048 4 |
DGCL | 0.179 3 | 0.248 3 | 0.106 7 | 0.124 7 | 0.067 7 | 0.105 7 | 0.050 6 | 0.063 1 | 0.052 6 | 0.084 5 | 0.035 9 | 0.046 9 |
SGL-ED | 0.180 9 | 0.255 9 | 0.106 7 | 0.126 2 | 0.077 4 | 0.120 4 | 0.057 8 | 0.071 9 | 0.057 4 | 0.091 9 | 0.039 3 | 0.051 3 |
SGL-ND | 0.181 4 | 0.258 9 | 0.106 5 | 0.126 7 | 0.072 2 | 0.112 1 | 0.054 2 | 0.067 4 | 0.055 3 | 0.088 5 | 0.037 9 | 0.049 4 |
HCCF | 0.181 8 | 0.260 1 | 0.106 1 | 0.126 5 | 0.082 4 | 0.128 2 | 0.062 5 | 0.077 6 | 0.062 3 | 0.098 6 | 0.042 5 | 0.055 2 |
LightGCL | 0.182 5 | 0.260 1 | 0.107 7 | 0.128 0 | 0.083 6 | 0.128 0 | 0.064 3 | 0.079 0 | 0.063 2 | 0.097 1 | 0.044 4 | 0.056 2 |
DCCF | ||||||||||||
MVMSCL | 0.198 3 | 0.274 2 | 0.117 5 | 0.137 4 | 0.101 8 | 0.148 9 | 0.080 2 | 0.099 5 | 0.073 5 | 0.113 2 | 0.052 3 | 0.066 0 |
模型 | R@20 | R@40 | N@20 | N@40 |
---|---|---|---|---|
MVMSCL- W | 0.184 2 | 0.258 6 | 0.108 2 | 0.127 7 |
MVMSCL- | 0.190 7 | 0.268 0 | 0.112 4 | 0.132 6 |
MVMSCL- | 0.190 9 | 0.268 1 | 0.112 5 | 0.132 6 |
MVMSCL- T | 0.187 7 | 0.264 4 | 0.112 1 | 0.132 9 |
MVMSCL-L | 0.189 5 | 0.266 0 | 0.112 1 | 0.132 1 |
MVMSCL-G | 0.195 8 | 0.272 7 | 0.116 1 | 0.136 3 |
MVMSCL-C | 0.198 0 | 0.274 0 | 0.117 0 | 0.137 1 |
MVMSCL | 0.198 3 | 0.274 2 | 0.117 5 | 0.137 4 |
Tab. 3 Comparison results of MVMSCL model’s ablation experiments
模型 | R@20 | R@40 | N@20 | N@40 |
---|---|---|---|---|
MVMSCL- W | 0.184 2 | 0.258 6 | 0.108 2 | 0.127 7 |
MVMSCL- | 0.190 7 | 0.268 0 | 0.112 4 | 0.132 6 |
MVMSCL- | 0.190 9 | 0.268 1 | 0.112 5 | 0.132 6 |
MVMSCL- T | 0.187 7 | 0.264 4 | 0.112 1 | 0.132 9 |
MVMSCL-L | 0.189 5 | 0.266 0 | 0.112 1 | 0.132 1 |
MVMSCL-G | 0.195 8 | 0.272 7 | 0.116 1 | 0.136 3 |
MVMSCL-C | 0.198 0 | 0.274 0 | 0.117 0 | 0.137 1 |
MVMSCL | 0.198 3 | 0.274 2 | 0.117 5 | 0.137 4 |
模型 | R@20 | R@40 | N@20 | N@40 |
---|---|---|---|---|
0.136 6 | 0.198 7 | 0.081 4 | 0.097 6 | |
0.172 3 | 0.245 5 | 0.101 7 | 0.121 1 | |
0.171 9 | 0.245 1 | 0.101 4 | 0.120 5 | |
0.166 3 | 0.241 1 | 0.097 2 | 0.116 6 | |
0.184 2 | 0.258 6 | 0.108 2 | 0.127 2 |
Tab. 4 Experimental results of multi-view fusion strategies
模型 | R@20 | R@40 | N@20 | N@40 |
---|---|---|---|---|
0.136 6 | 0.198 7 | 0.081 4 | 0.097 6 | |
0.172 3 | 0.245 5 | 0.101 7 | 0.121 1 | |
0.171 9 | 0.245 1 | 0.101 4 | 0.120 5 | |
0.166 3 | 0.241 1 | 0.097 2 | 0.116 6 | |
0.184 2 | 0.258 6 | 0.108 2 | 0.127 2 |
模型 | R@20 | R@40 | N@20 | N@40 |
---|---|---|---|---|
AllLocal+Layer | 0.180 9 | 0.106 8 | 0.256 2 | 0.126 5 |
AllGlobal+Layer | 0.192 1 | 0.114 6 | 0.269 5 | 0.134 8 |
Local+Global+Layer | 0.198 3 | 0.117 5 | 0.274 2 | 0.137 4 |
Tab. 5 Multi-scale comparative strategies
模型 | R@20 | R@40 | N@20 | N@40 |
---|---|---|---|---|
AllLocal+Layer | 0.180 9 | 0.106 8 | 0.256 2 | 0.126 5 |
AllGlobal+Layer | 0.192 1 | 0.114 6 | 0.269 5 | 0.134 8 |
Local+Global+Layer | 0.198 3 | 0.117 5 | 0.274 2 | 0.137 4 |
1 | GAO C, ZHENG Y, LI N, et al. A survey of graph neural networks for recommender systems: challenges, methods, and directions[J]. ACM Transactions on Recommender Systems, 2023, 1(1): No.3. |
2 | PARK S, YOON M, LEE J W, et al. Toward a better understanding of loss functions for collaborative filtering [C]// Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 2034-2043. |
3 | WANG X, HE X, WANG M, et al. Neural graph collaborative filtering [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. |
4 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
5 | MAO K, ZHU J, XIAO X, et al. UltraGCN: ultra simplification of graph convolutional networks for recommendation [C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 1253-1262. |
6 | LINSKER R. Self-organization in a perceptual network [J]. Computer, 1988, 21(3):105-117. |
7 | 杨兴耀,陈羽,于炯,等. 结合自我特征和对比学习的推荐模型[J]. 计算机应用, 2024, 44(9):2704-2710. |
YANG X Y, CHEN Y, YU J, et al. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9):2704-2710. | |
8 | WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. |
9 | LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning [C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2320-2329. |
10 | XIA L, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 70-79. |
11 | WANG W, FENG F, HE X, et al. Deconfounded recommendation for alleviating bias amplification [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1717-1725. |
12 | ABRAMOVICH S, PERSSON L E. Some new estimates of the ‘Jensen gap’ [J]. Journal of Inequalities and Applications, 2016, 2016: No.39. |
13 | GAO X, SITHARAM M, ROITBERG A E. Bounds on the Jensen gap, and implications for mean-concentrated distributions [J]. Information Processing and Management, 2019, 16(2): No.14. |
14 | HAMERS L, HEMERYCK Y, HERWEYERS G, et al. Similarity measures in scientometric research: the Jaccard index versus Salton’s cosine formula [J]. Information Processing and Management, 1989, 25(3): 315-318. |
15 | TIAN C, XIE Y, LI Y, et al. Learning to denoise unreliable interactions for graph collaborative filtering [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 122-132. |
16 | REN X, XIA L, ZHAO J, et al. Disentangled contrastive collaborative filtering [C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023:1137-1146. |
17 | CAI X, HUANG C, XIA L, et al. LightGCL: simple yet effective graph contrastive learning for recommendation [EB/OL]. [2024-05-23]. . |
18 | HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. |
19 | SEDHAIN S, MENON A K, SANNER S, et al. AutoRec: autoencoders meet collaborative filtering [C]// Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 111-112. |
20 | WANG X, JIN H, ZHANG A, et al. Disentangled graph collaborative filtering [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1001-1010. |
21 | LI H, WANG X, ZHANG Z, et al. Disentangled contrastive learning on graphs [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 21872-21884. |
[1] | Lan YOU, Yuang ZHANG, Yuan LIU, Zhijun CHEN, Wei WANG, Xing ZENG, Zhangwei HE. Developer recommendation for open-source projects based on collaborative contribution network [J]. Journal of Computer Applications, 2025, 45(4): 1213-1222. |
[2] | Cong WANG, Yancui SHI. Group recommendation model by graph neural network based on multi-perspective learning [J]. Journal of Computer Applications, 2025, 45(4): 1205-1212. |
[3] | Guangju YANG, Tianjian LUO, Kaijun WANG, Siqi YANG. Multi-branch multi-view based contextual contrastive representation learning method for time series [J]. Journal of Computer Applications, 2025, 45(4): 1042-1052. |
[4] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
[5] | Yuanlong WANG, Tinghua LIU, Hu ZHANG. Commonsense question answering model based on cross-modal contrastive learning [J]. Journal of Computer Applications, 2025, 45(3): 732-738. |
[6] | Wei CHEN, Changyong SHI, Chuanxiang MA. Crop disease recognition method based on multi-modal data fusion [J]. Journal of Computer Applications, 2025, 45(3): 840-848. |
[7] | Sheng YANG, Yan LI. Contrastive knowledge distillation method for object detection [J]. Journal of Computer Applications, 2025, 45(2): 354-361. |
[8] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
[9] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[10] | Xiaosheng YU, Zhixin WANG. Sequential recommendation model based on multi-level graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(1): 106-114. |
[11] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[12] | Wenbo ZHAO, Zitong MA, Zhe YANG. Link prediction model based on directed hypergraph adaptive convolution [J]. Journal of Computer Applications, 2025, 45(1): 15-23. |
[13] | Zhuoyue OU, Xiuqin DENG, Lei CHEN. Self-adaptive multi-view clustering algorithm with complementarity based on weighted anchors [J]. Journal of Computer Applications, 2025, 45(1): 115-126. |
[14] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[15] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||