Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1042-1052.DOI: 10.11772/j.issn.1001-9081.2024040448
• Artificial intelligence • Previous Articles Next Articles
Guangju YANG1,2, Tianjian LUO1,2(), Kaijun WANG1,2, Siqi YANG1,2
Received:
2024-04-15
Revised:
2024-06-25
Accepted:
2024-06-28
Online:
2025-04-08
Published:
2025-04-10
Contact:
Tianjian LUO
About author:
YANG Guangju, born in 1999, M. S. candidate. His research interests include time-series analysis, pattern recognition.Supported by:
杨光局1,2, 罗天健1,2(), 王开军1,2, 杨思琪1,2
通讯作者:
罗天健
作者简介:
杨光局(1999—),男,福建三明人,硕士研究生,主要研究方向:时间序列分析、模式识别基金资助:
CLC Number:
Guangju YANG, Tianjian LUO, Kaijun WANG, Siqi YANG. Multi-branch multi-view based contextual contrastive representation learning method for time series[J]. Journal of Computer Applications, 2025, 45(4): 1042-1052.
杨光局, 罗天健, 王开军, 杨思琪. 多分支多视图的时间序列上下文对比表征学习方法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1042-1052.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040448
分支 | Conv1d | MaxPool1d | ||||
---|---|---|---|---|---|---|
kernel_size | stride | padding | kernel_size | stride | padding | |
分支1 | (1,20) | 3 | 10 | (1,2) | 2 | 1 |
(1,8) | 1 | 4 | (1,2) | 2 | 1 | |
(1,8) | 1 | 4 | (1,2) | 2 | 1 | |
分支2 | (1,25) | 3 | 12 | (1,2) | 2 | 1 |
(1,8) | 1 | 4 | (1,2) | 2 | 1 | |
(1,8) | 1 | 4 | (1,2) | 2 | 1 | |
分支3 | (1,30) | 3 | 15 | (1,2) | 2 | 1 |
(1,8) | 1 | 4 | (1,2) | 2 | 1 | |
(1,8) | 1 | 4 | (1,2) | 2 | 1 |
Tab. 1 Parameters of time series encoder operations in each branch
分支 | Conv1d | MaxPool1d | ||||
---|---|---|---|---|---|---|
kernel_size | stride | padding | kernel_size | stride | padding | |
分支1 | (1,20) | 3 | 10 | (1,2) | 2 | 1 |
(1,8) | 1 | 4 | (1,2) | 2 | 1 | |
(1,8) | 1 | 4 | (1,2) | 2 | 1 | |
分支2 | (1,25) | 3 | 12 | (1,2) | 2 | 1 |
(1,8) | 1 | 4 | (1,2) | 2 | 1 | |
(1,8) | 1 | 4 | (1,2) | 2 | 1 | |
分支3 | (1,30) | 3 | 15 | (1,2) | 2 | 1 |
(1,8) | 1 | 4 | (1,2) | 2 | 1 | |
(1,8) | 1 | 4 | (1,2) | 2 | 1 |
操作 | kernel_size | stride | padding |
---|---|---|---|
Conv2d | (3,3) | 1 | 1 |
MaxPool2d | (3,3) | 2 | 0 |
Tab. 2 Operation parameters of frequency domain residual module
操作 | kernel_size | stride | padding |
---|---|---|---|
Conv2d | (3,3) | 1 | 1 |
MaxPool2d | (3,3) | 2 | 0 |
数据集 | 通道数 | 采样 点数 | 特征表达 维度 | 训练 样本数 | 测试 样本数 | 类别数 |
---|---|---|---|---|---|---|
HAR | 9 | 128 | 128×144 | 7 352 | 2 947 | 6 |
Epilepsy | 1 | 178 | 128×123 | 9 200 | 2 300 | 2 |
Sleep-EDF | 1 | 3 000 | 128×114 | 33 398 | 8 910 | 5 |
Tab. 3 Statistical information of time series datasets
数据集 | 通道数 | 采样 点数 | 特征表达 维度 | 训练 样本数 | 测试 样本数 | 类别数 |
---|---|---|---|---|---|---|
HAR | 9 | 128 | 128×144 | 7 352 | 2 947 | 6 |
Epilepsy | 1 | 178 | 128×123 | 9 200 | 2 300 | 2 |
Sleep-EDF | 1 | 3 000 | 128×114 | 33 398 | 8 910 | 5 |
对比方法 | HAR | Epilepsy | Sleep-EDF | |||
---|---|---|---|---|---|---|
准确率 | MF1 | 准确率 | MF1 | 准确率 | MF1 | |
SSL-ECG | 65.34±1.63 | 63.75±1.37 | 93.72±0.45 | 89.15±0.93 | 74.58±0.60 | 65.44±0.97 |
CPC | 83.85±1.51 | 83.27±1.66 | 96.61±0.43 | 94.44±0.69 | 82.82±1.68 | 73.94±1.75 |
SimCLR | 80.97±2.46 | 80.19±2.64 | 96.05±0.34 | 93.53±0.63 | 78.91±3.11 | 68.60±2.71 |
TS-TCC | 90.37±0.34 | 90.38±0.39 | 97.23±0.10 | 95.54±0.08 | 83.00±0.71 | 73.57±0.74 |
本文方法+SVM | 93.82±0.40 | 94.05±0.46 | 97.35±0.32 | 95.90±0.52 | 84.89±0.25 | 75.77±0.27 |
本文方法+ANCR | 95.52±0.26 | 95.71±0.21 | 98.13±0.38 | 97.07±0.61 | — | — |
Tab. 4 Comparison of classification results among proposed method and baseline methods
对比方法 | HAR | Epilepsy | Sleep-EDF | |||
---|---|---|---|---|---|---|
准确率 | MF1 | 准确率 | MF1 | 准确率 | MF1 | |
SSL-ECG | 65.34±1.63 | 63.75±1.37 | 93.72±0.45 | 89.15±0.93 | 74.58±0.60 | 65.44±0.97 |
CPC | 83.85±1.51 | 83.27±1.66 | 96.61±0.43 | 94.44±0.69 | 82.82±1.68 | 73.94±1.75 |
SimCLR | 80.97±2.46 | 80.19±2.64 | 96.05±0.34 | 93.53±0.63 | 78.91±3.11 | 68.60±2.71 |
TS-TCC | 90.37±0.34 | 90.38±0.39 | 97.23±0.10 | 95.54±0.08 | 83.00±0.71 | 73.57±0.74 |
本文方法+SVM | 93.82±0.40 | 94.05±0.46 | 97.35±0.32 | 95.90±0.52 | 84.89±0.25 | 75.77±0.27 |
本文方法+ANCR | 95.52±0.26 | 95.71±0.21 | 98.13±0.38 | 97.07±0.61 | — | — |
方法 | 准确率 | MF1 |
---|---|---|
TS-TCC* | 52.91±6.72 | 43.46±8.63 |
TS-TCC** | 72.32±2.54 | 65.59±2.52 |
TS-TCC | 74.49±0.72 | 65.48±0.61 |
本文方法+SVM | 79.94±0.65 | 65.66±0.94 |
本文方法+ANCR | 81.93±0.24 | 71.54±0.59 |
Tab. 5 Comparison of results of different methods on Sleep-EDF dataset
方法 | 准确率 | MF1 |
---|---|---|
TS-TCC* | 52.91±6.72 | 43.46±8.63 |
TS-TCC** | 72.32±2.54 | 65.59±2.52 |
TS-TCC | 74.49±0.72 | 65.48±0.61 |
本文方法+SVM | 79.94±0.65 | 65.66±0.94 |
本文方法+ANCR | 81.93±0.24 | 71.54±0.59 |
实验设置 | HAR | Epilepsy | Sleep-EDF | |||
---|---|---|---|---|---|---|
特征 表达 | 特征 分类 | 特征 表达 | 特征 分类 | 特征 表达 | 特征 分类 | |
TS-TCC+SVM | 568 | 0.07 | 211 | 0.05 | 3 317 | 0.22 |
TS-TCC+ANCR | 568 | 0.17 | 211 | 0.13 | 3 317 | 0.32 |
本文方法+SVM | 889 | 0.12 | 764 | 0.04 | 15 746 | 0.31 |
本文方法+ANCR | 889 | 0.21 | 764 | 0.19 | 15 746 | 0.47 |
Tab. 6 Comparison results of feature representation and classification time with different settings
实验设置 | HAR | Epilepsy | Sleep-EDF | |||
---|---|---|---|---|---|---|
特征 表达 | 特征 分类 | 特征 表达 | 特征 分类 | 特征 表达 | 特征 分类 | |
TS-TCC+SVM | 568 | 0.07 | 211 | 0.05 | 3 317 | 0.22 |
TS-TCC+ANCR | 568 | 0.17 | 211 | 0.13 | 3 317 | 0.32 |
本文方法+SVM | 889 | 0.12 | 764 | 0.04 | 15 746 | 0.31 |
本文方法+ANCR | 889 | 0.21 | 764 | 0.19 | 15 746 | 0.47 |
特征表达 | 分类器 | HAR | Epilepsy | Sleep-EDF | |||
---|---|---|---|---|---|---|---|
准确率 | MF1 | 准确率 | MF1 | 准确率 | MF1 | ||
单分支时域视图 | SVM | 87.92±0.33 | 87.75±0.42 | 96.43±0.45 | 94.48±0.65 | 83.34±0.24 | 73.30±0.33 |
ANCR | 92.94±0.74 | 93.17±1.10 | 97.13±0.30 | 95.56±0.49 | — | — | |
频域视图 | SVM | 88.53±0.63 | 88.68±0.81 | 97.09±0.29 | 95.42±0.42 | 83.78±0.26 | 76.76±0.31 |
ANCR | 93.32±0.54 | 93.72±1.12 | 97.61±0.24 | 96.20±0.38 | — | — | |
多分支时域视图 | SVM | 93.86±3.51 | 94.11±3.82 | 97.17±0.37 | 95.51±0.55 | 84.77±0.42 | 76.63±0.70 |
ANCR | 93.99±1.38 | 94.43±1.49 | 97.96±0.36 | 96.84±0.51 | — | — | |
多分支时频域视图 | SVM | 93.82±0.40 | 94.05±0.46 | 97.35±0.32 | 95.90±0.52 | 84.89±0.25 | 75.77±0.27 |
ANCR | 95.52±0.26 | 95.71±0.21 | 98.13±0.38 | 97.07±0.61 | — | — |
Tab. 7 Ablation experimental results of feature representation and feature classification
特征表达 | 分类器 | HAR | Epilepsy | Sleep-EDF | |||
---|---|---|---|---|---|---|---|
准确率 | MF1 | 准确率 | MF1 | 准确率 | MF1 | ||
单分支时域视图 | SVM | 87.92±0.33 | 87.75±0.42 | 96.43±0.45 | 94.48±0.65 | 83.34±0.24 | 73.30±0.33 |
ANCR | 92.94±0.74 | 93.17±1.10 | 97.13±0.30 | 95.56±0.49 | — | — | |
频域视图 | SVM | 88.53±0.63 | 88.68±0.81 | 97.09±0.29 | 95.42±0.42 | 83.78±0.26 | 76.76±0.31 |
ANCR | 93.32±0.54 | 93.72±1.12 | 97.61±0.24 | 96.20±0.38 | — | — | |
多分支时域视图 | SVM | 93.86±3.51 | 94.11±3.82 | 97.17±0.37 | 95.51±0.55 | 84.77±0.42 | 76.63±0.70 |
ANCR | 93.99±1.38 | 94.43±1.49 | 97.96±0.36 | 96.84±0.51 | — | — | |
多分支时频域视图 | SVM | 93.82±0.40 | 94.05±0.46 | 97.35±0.32 | 95.90±0.52 | 84.89±0.25 | 75.77±0.27 |
ANCR | 95.52±0.26 | 95.71±0.21 | 98.13±0.38 | 97.07±0.61 | — | — |
样本增强 | 分类器 | HAR | Epilepsy | Sleep-EDF | |||
---|---|---|---|---|---|---|---|
准确率 | MF1 | 准确率 | MF1 | 准确率 | MF1 | ||
仅“弱增强” | SVM | 87.75±0.47 | 87.63±0.86 | 96.44±0.35 | 94.08±0.58 | 81.33±0.43 | 75.65±1.66 |
ANCR | 93.35±0.23 | 96.17±0.65 | 97.70±1.29 | 96.17±2.11 | — | — | |
仅“强增强” | SVM | 92.54±1.21 | 92.83±1.87 | 96.91±0.67 | 94.89±0.74 | 82.16±0.32 | 77.19±1.25 |
ANCR | 94.74±0.54 | 95.02±0.73 | 97.43±0.71 | 95.72±0.84 | — | — | |
“强、弱增强” | SVM | 93.82±0.40 | 94.05±0.46 | 97.35±0.32 | 95.90±0.52 | 84.89±0.25 | 75.77±0.27 |
ANCR | 95.52±0.26 | 95.71±0.21 | 98.13±0.38 | 97.07±0.61 | — | — |
Tab. 8 Ablation experimental results of sample enhancement methods
样本增强 | 分类器 | HAR | Epilepsy | Sleep-EDF | |||
---|---|---|---|---|---|---|---|
准确率 | MF1 | 准确率 | MF1 | 准确率 | MF1 | ||
仅“弱增强” | SVM | 87.75±0.47 | 87.63±0.86 | 96.44±0.35 | 94.08±0.58 | 81.33±0.43 | 75.65±1.66 |
ANCR | 93.35±0.23 | 96.17±0.65 | 97.70±1.29 | 96.17±2.11 | — | — | |
仅“强增强” | SVM | 92.54±1.21 | 92.83±1.87 | 96.91±0.67 | 94.89±0.74 | 82.16±0.32 | 77.19±1.25 |
ANCR | 94.74±0.54 | 95.02±0.73 | 97.43±0.71 | 95.72±0.84 | — | — | |
“强、弱增强” | SVM | 93.82±0.40 | 94.05±0.46 | 97.35±0.32 | 95.90±0.52 | 84.89±0.25 | 75.77±0.27 |
ANCR | 95.52±0.26 | 95.71±0.21 | 98.13±0.38 | 97.07±0.61 | — | — |
1 | MEISENBACHER S, TUROWSKI M, PHIPPS K, et al. Review of automated time series forecasting pipelines[J]. WIREs Data Mining and Knowledge Discovery, 2022, 12(6): No.e1475. |
2 | 王开军,曾元鹏,缪忠剑. 差异区域平衡法探索时间序列变化的因果关系[J]. 电子与信息学报, 2021, 43(8):2414-2420. |
WANG K J, ZENG Y P, MIU Z J. Different-region balance method for exploring varying causal relations between time series[J]. Journal of Electronics and Information Technology, 2021, 43(8):2414-2420. | |
3 | CHING T, HIMMELSTEIN D S, BEAULIEU-JONES B K, et al. Opportunities and obstacles for deep learning in biology and medicine[J]. Journal of The Royal Society Interface, 2018, 15(141): No.20170387. |
4 | ZHANG X, GAO Y, LIN J, et al. TapNet: multivariate time series classification with attentional prototypical network[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 6845-6852. |
5 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607. |
6 | ZHANG X, LUO T, HAN T, et al. A novel performance degradation prognostics approach and its application on ball screw[J]. Measurement, 2022, 195: No.111184. |
7 | 周业瀚,沈子钰,周清,等. 基于生成式对抗网络的自监督多元时间序列异常检测方法[J]. 南京大学学报(自然科学), 2023, 59(2):256-262. |
ZHOU Y H, SHEN Z Y, ZHOU Q, et al. Self-supervised multivariate time series anomaly detection based on GAN[J]. Journal of Nanjing University (Natural Science), 2023, 59(2):256-262. | |
8 | HE K, FAN H, WU Y, et al. Momentum contrast for unsupervised visual representation learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9726-9735. |
9 | ELDELE E, RAGAB M, CHEN Z, et al. Time-series representation learning via temporal and contextual contrasting[C]// Proceedings of the 13th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 2352-2359. |
10 | ELDELE E, CHEN Z, LIU C, et al. An attention-based deep learning approach for sleep stage classification with single-channel EEG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 809-818. |
11 | 何坚,郭泽龙,刘乐园,等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177. |
HE J, GUO Z L, LIU L Y, et al. Human activity recognition technology based on sliding window and convolutional neural network[J]. Journal of Electronics and Information Technology, 2022, 44(1): 168-177. | |
12 | WANG X, DU Y, VERBERNE S, et al. Improving weakly supervised phrase grounding via visual representation contextualization with contrastive learning[J]. Applied Intelligence, 2023, 53(11): 14690-14702. |
13 | GRILL J B, STRUB F, ALTCHÉ F, et al. Bootstrap your own latent — a new approach to self-supervised learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21271-21284. |
14 | CHEN X, HE K. Exploring simple Siamese representation learning[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15745-15753. |
15 | GE C, WANG J, TONG Z, et al. Soft neighbors are positive supporters in contrastive visual representation learning[EB/OL]. [2024-03-12].. |
16 | SARKAR P, ETEMAD A. Self-supervised ECG representation learning for emotion recognition[J]. IEEE Transactions on Affective Computing, 2020, 13(3):1541-1554. |
17 | VAN DEN OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. [2024-03-12].. |
18 | LIU Y Y, LIU J W. The time-sequence prediction via temporal and contextual contrastive representation learning[C]// Proceedings of the 2022 Pacific Rim International Conference on Artificial Intelligence, LNCS 13629. Cham: Springer, 2022: 465-476. |
19 | KUMAR V, REDDY L, SHARMA S K, et al. mulEEG: A multi-view representation learning on EEG signals[C]// Proceedings of the 2022 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 13433. Cham: Springer, 2022: 398-407. |
20 | JIA Z, LIN Y, WANG J, et al. MMCNN: a multi-branch multi-scale convolutional neural network for motor imagery classification[C]// Proceedings of the 2020 European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 12459. Cham: Springer, 2021: 736-751. |
21 | LIU X, XIONG S, WANG X, et al. A compact multi-branch 1D convolutional neural network for EEG-based motor imagery classification[J]. Biomedical Signal Processing and Control, 2023, 81: No.104456. |
22 | WAMG Z, YAN W, OATES T. Time series classification from scratch with deep neural networks: a strong baseline[C]// Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 1578-1585. |
23 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
24 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
25 | WANG Q, LI B, XIAO T, et al. Learning deep transformer models for machine translation[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 1810-1822. |
26 | BROUHNS N, DENUIT M, VERMUNT J K. A Poisson log-bilinear regression approach to the construction of projected lifetables[J]. Insurance: Mathematics and Economics, 2002, 31(3): 373-393. |
27 | DEMPSTER A, PETITJEAN F, WEBB G I. ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels[J]. Data Mining and Knowledge Discovery, 2020, 34: 1454-1495. |
28 | XIAO Z, XU X, ZHANG H, et al. A new multi-process collaborative architecture for time series classification[J]. Knowledge-Based Systems, 2021, 220: No.106934. |
29 | YIN H F, WU X J, FENG Z H, et al. Affine non-negative collaborative representation based pattern classification[EB/OL]. [2024-03-12]. . |
30 | ANGUITA D, GHIO A, ONETO L, et al. A public domain dataset for human activity recognition using smartphones[EB/OL]. [2024-03-12].. |
31 | ANDRZEJAK R G, LEHNERTZ K, MORMANN F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state[J]. Physical Review E, 2001, 64(6): No.061907. |
32 | GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220. |
33 | FUREY T S, CRISTIANINI N, DUFFY N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data[J]. Bioinformatics, 2000, 16(10): 906-914. |
34 | 肖晓琳,辛风然,梅杰,等. 自适应脑机接口研究综述[J]. 电子与信息学报, 2023, 45(7):2386-2394. |
XIAO X L, XIN F R, MEI J, et al. A review of adaptive brain-computer interface research[J]. Journal of Electronics and Information Technology, 2023, 45(7):2386-2394. |
[1] | Weichao DANG, Xinyu WEN, Gaimei GAO, Chunxia LIU. Multi-view and multi-scale contrastive learning for graph collaborative filtering [J]. Journal of Computer Applications, 2025, 45(4): 1061-1068. |
[2] | Junyi ZHU, Leilei CHANG, Xiaobin XU, Zhiyong HAO, Haiyue YU, Jiang JIANG. Self-supervised learning method using minimal prior knowledge [J]. Journal of Computer Applications, 2025, 45(4): 1035-1041. |
[3] | Qianting ZHANG, Liying HU, Lifei CHEN. Robust shapelet representation method for time series [J]. Journal of Computer Applications, 2025, 45(2): 436-443. |
[4] | Hanlin ZHANG, Junlu WANG, Baoyan SONG. Time series event classification method fused with derived features [J]. Journal of Computer Applications, 2025, 45(2): 428-435. |
[5] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
[6] | Siqi ZHANG, Jinjun ZHANG, Tianyi WANG, Xiaolin QIN. Deep temporal event detection algorithm based on signal temporal logic [J]. Journal of Computer Applications, 2025, 45(1): 90-97. |
[7] | Jianpeng HU, Lichen ZHANG. Deep spatio-temporal network model for multi-time step wind power prediction [J]. Journal of Computer Applications, 2025, 45(1): 98-105. |
[8] | Zijun MIAO, Fei LUO, Weichao DING, Wenbo DONG. Traffic signal control algorithm based on overall state prediction and fair experience replay [J]. Journal of Computer Applications, 2025, 45(1): 337-344. |
[9] | Zhuoyue OU, Xiuqin DENG, Lei CHEN. Self-adaptive multi-view clustering algorithm with complementarity based on weighted anchors [J]. Journal of Computer Applications, 2025, 45(1): 115-126. |
[10] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[11] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[12] | Qinzhuang ZHAO, Hongye TAN. Time series causal inference method based on adaptive threshold learning [J]. Journal of Computer Applications, 2024, 44(9): 2660-2666. |
[13] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[14] | Lilin FAN, Fukang CAO, Wanting WANG, Kai YANG, Zhaoyu SONG. Intermittent demand forecasting method based on adaptive matching of demand patterns [J]. Journal of Computer Applications, 2024, 44(9): 2747-2755. |
[15] | Yao DONG, Yixue FU, Yongfeng DONG, Jin SHI, Chen CHEN. Survey of incomplete multi-view clustering [J]. Journal of Computer Applications, 2024, 44(6): 1673-1682. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||