Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1223-1231.DOI: 10.11772/j.issn.1001-9081.2024040461
• Data science and technology • Previous Articles Next Articles
Weichao DANG, Chujun SONG(), Gaimei GAO, Chunxia LIU
Received:
2024-04-18
Revised:
2024-06-12
Accepted:
2024-06-19
Online:
2025-04-08
Published:
2025-04-10
Contact:
Chujun SONG
About author:
DANG Weichao, born in 1974, Ph. D., associate professor. His research interests include intelligent computing, software reliability.Supported by:
通讯作者:
宋楚君
作者简介:
党伟超(1974—),男,山西运城人,副教授,博士,CCF会员,主要研究方向:智能计算、软件可靠性基金资助:
CLC Number:
Weichao DANG, Chujun SONG, Gaimei GAO, Chunxia LIU. Multi-behavior recommendation based on cascading residual graph convolutional network[J]. Journal of Computer Applications, 2025, 45(4): 1223-1231.
党伟超, 宋楚君, 高改梅, 刘春霞. 基于级联残差图卷积网络的多行为推荐[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1223-1231.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040461
数据集 | 用户数 | 项目数 | 购买数 | 加购数 | 收藏数 | 浏览数 |
---|---|---|---|---|---|---|
Tmall | 41 738 | 11 953 | 255 586 | 1 996 | 221 514 | 1 813 498 |
Beibei | 21 716 | 7 997 | 304 576 | 642 622 | — | 2 412 586 |
Jdata | 93 334 | 24 624 | 333 383 | 49 891 | 45 613 | 1 681 430 |
Tab. 1 Statistical information of datasets
数据集 | 用户数 | 项目数 | 购买数 | 加购数 | 收藏数 | 浏览数 |
---|---|---|---|---|---|---|
Tmall | 41 738 | 11 953 | 255 586 | 1 996 | 221 514 | 1 813 498 |
Beibei | 21 716 | 7 997 | 304 576 | 642 622 | — | 2 412 586 |
Jdata | 93 334 | 24 624 | 333 383 | 49 891 | 45 613 | 1 681 430 |
数据集 | 评价指标 | 单行为 | 多行为 | 提高/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MF-BPR | NCF | LightGCN | R-GCN | NMTR | MBGCN | GNMR | S-MBRec | CRGCN | MB-HGCN | CRMBR | |||
Tmall | HR@10 | 0.023 0 | 0.030 1 | 0.039 3 | 0.031 6 | 0.051 7 | 0.054 9 | 0.039 3 | 0.069 4 | 0.084 0 | 0.150 2 | 2.8 | |
NDCG@10 | 0.012 4 | 0.015 3 | 0.020 9 | 0.015 7 | 0.025 0 | 0.028 5 | 0.019 3 | 0.036 2 | 0.044 2 | 0.080 1 | 4.0 | ||
HR@20 | 0.031 6 | 0.042 0 | 0.053 8 | 0.048 9 | 0.084 7 | 0.079 9 | 0.061 9 | 0.100 9 | 0.123 8 | 0.213 6 | 3.1 | ||
NDCG@20 | 0.014 4 | 0.018 2 | 0.024 3 | 0.019 8 | 0.033 0 | 0.034 5 | 0.024 7 | 0.043 8 | 0.054 0 | 0.095 6 | 3.9 | ||
HR@50 | 0.043 4 | 0.067 8 | 0.081 3 | 0.082 6 | 0.149 8 | 0.128 5 | 0.107 1 | 0.155 3 | 0.199 4 | 0.318 6 | 1.2 | ||
NDCG@50 | 0.016 6 | 0.023 1 | 0.029 5 | 0.026 2 | 0.045 6 | 0.043 8 | 0.033 2 | 0.054 4 | 0.068 5 | 0.116 0 | 2.7 | ||
Beibei | HR@10 | 0.026 8 | 0.029 6 | 0.030 9 | 0.032 7 | 0.031 5 | 0.037 3 | 0.039 6 | 0.048 9 | 0.053 9 | 0.069 4 | 12.1 | |
NDCG@10 | 0.013 9 | 0.014 6 | 0.016 1 | 0.016 1 | 0.014 6 | 0.019 3 | 0.021 9 | 0.025 3 | 0.025 9 | 0.034 3 | 15.5 | ||
HR@20 | 0.042 7 | 0.045 3 | 0.047 8 | 0.056 1 | 0.058 7 | 0.063 9 | 0.064 0 | 0.077 0 | 0.094 4 | 0.118 0 | 15.8 | ||
NDCG@20 | 0.017 9 | 0.018 5 | 0.020 4 | 0.021 9 | 0.021 4 | 0.025 9 | 0.028 0 | 0.032 4 | 0.036 1 | 0.046 4 | 16.9 | ||
HR@50 | 0.079 3 | 0.080 9 | 0.088 0 | 0.111 8 | 0.127 6 | 0.128 7 | 0.121 9 | 0.123 4 | 0.181 7 | 0.229 7 | 14.3 | ||
NDCG@50 | 0.025 0 | 0.021 6 | 0.028 2 | 0.032 9 | 0.034 8 | 0.038 6 | 0.039 4 | 0.041 5 | 0.053 2 | 0.068 4 | 15.5 | ||
Jdata | HR@10 | 0.185 0 | 0.209 0 | 0.225 2 | 0.240 6 | 0.314 2 | 0.280 3 | 0.306 8 | 0.412 5 | 0.500 1 | 0.541 1 | 1.4 | |
NDCG@10 | 0.123 8 | 0.141 0 | 0.143 6 | 0.144 4 | 0.171 7 | 0.157 2 | 0.158 1 | 0.277 9 | 0.291 4 | 0.329 2 | 1.7 | ||
HR@20 | 0.219 2 | 0.246 1 | 0.282 5 | 0.341 8 | 0.408 6 | 0.360 3 | 0.369 4 | 0.495 7 | 0.619 0 | 0.651 5 | 1.0 | ||
NDCG@20 | 0.132 5 | 0.150 4 | 0.158 2 | 0.158 8 | 0.196 6 | 0.179 0 | 0.194 4 | 0.298 9 | 0.322 5 | 0.364 8 | 3.3 | ||
HR@50 | 0.265 2 | 0.293 4 | 0.365 8 | 0.487 3 | 0.522 7 | 0.504 5 | 0.460 7 | 0.603 6 | 0.768 5 | 0.783 6 | 1.1 | ||
NDCG@50 | 0.141 7 | 0.159 9 | 0.174 7 | 0.189 1 | 0.219 8 | 0.198 4 | 0.202 9 | 0.320 3 | 0.353 5 | 0.390 2 | 2.6 |
Tab. 2 Overall performance comparison results
数据集 | 评价指标 | 单行为 | 多行为 | 提高/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MF-BPR | NCF | LightGCN | R-GCN | NMTR | MBGCN | GNMR | S-MBRec | CRGCN | MB-HGCN | CRMBR | |||
Tmall | HR@10 | 0.023 0 | 0.030 1 | 0.039 3 | 0.031 6 | 0.051 7 | 0.054 9 | 0.039 3 | 0.069 4 | 0.084 0 | 0.150 2 | 2.8 | |
NDCG@10 | 0.012 4 | 0.015 3 | 0.020 9 | 0.015 7 | 0.025 0 | 0.028 5 | 0.019 3 | 0.036 2 | 0.044 2 | 0.080 1 | 4.0 | ||
HR@20 | 0.031 6 | 0.042 0 | 0.053 8 | 0.048 9 | 0.084 7 | 0.079 9 | 0.061 9 | 0.100 9 | 0.123 8 | 0.213 6 | 3.1 | ||
NDCG@20 | 0.014 4 | 0.018 2 | 0.024 3 | 0.019 8 | 0.033 0 | 0.034 5 | 0.024 7 | 0.043 8 | 0.054 0 | 0.095 6 | 3.9 | ||
HR@50 | 0.043 4 | 0.067 8 | 0.081 3 | 0.082 6 | 0.149 8 | 0.128 5 | 0.107 1 | 0.155 3 | 0.199 4 | 0.318 6 | 1.2 | ||
NDCG@50 | 0.016 6 | 0.023 1 | 0.029 5 | 0.026 2 | 0.045 6 | 0.043 8 | 0.033 2 | 0.054 4 | 0.068 5 | 0.116 0 | 2.7 | ||
Beibei | HR@10 | 0.026 8 | 0.029 6 | 0.030 9 | 0.032 7 | 0.031 5 | 0.037 3 | 0.039 6 | 0.048 9 | 0.053 9 | 0.069 4 | 12.1 | |
NDCG@10 | 0.013 9 | 0.014 6 | 0.016 1 | 0.016 1 | 0.014 6 | 0.019 3 | 0.021 9 | 0.025 3 | 0.025 9 | 0.034 3 | 15.5 | ||
HR@20 | 0.042 7 | 0.045 3 | 0.047 8 | 0.056 1 | 0.058 7 | 0.063 9 | 0.064 0 | 0.077 0 | 0.094 4 | 0.118 0 | 15.8 | ||
NDCG@20 | 0.017 9 | 0.018 5 | 0.020 4 | 0.021 9 | 0.021 4 | 0.025 9 | 0.028 0 | 0.032 4 | 0.036 1 | 0.046 4 | 16.9 | ||
HR@50 | 0.079 3 | 0.080 9 | 0.088 0 | 0.111 8 | 0.127 6 | 0.128 7 | 0.121 9 | 0.123 4 | 0.181 7 | 0.229 7 | 14.3 | ||
NDCG@50 | 0.025 0 | 0.021 6 | 0.028 2 | 0.032 9 | 0.034 8 | 0.038 6 | 0.039 4 | 0.041 5 | 0.053 2 | 0.068 4 | 15.5 | ||
Jdata | HR@10 | 0.185 0 | 0.209 0 | 0.225 2 | 0.240 6 | 0.314 2 | 0.280 3 | 0.306 8 | 0.412 5 | 0.500 1 | 0.541 1 | 1.4 | |
NDCG@10 | 0.123 8 | 0.141 0 | 0.143 6 | 0.144 4 | 0.171 7 | 0.157 2 | 0.158 1 | 0.277 9 | 0.291 4 | 0.329 2 | 1.7 | ||
HR@20 | 0.219 2 | 0.246 1 | 0.282 5 | 0.341 8 | 0.408 6 | 0.360 3 | 0.369 4 | 0.495 7 | 0.619 0 | 0.651 5 | 1.0 | ||
NDCG@20 | 0.132 5 | 0.150 4 | 0.158 2 | 0.158 8 | 0.196 6 | 0.179 0 | 0.194 4 | 0.298 9 | 0.322 5 | 0.364 8 | 3.3 | ||
HR@50 | 0.265 2 | 0.293 4 | 0.365 8 | 0.487 3 | 0.522 7 | 0.504 5 | 0.460 7 | 0.603 6 | 0.768 5 | 0.783 6 | 1.1 | ||
NDCG@50 | 0.141 7 | 0.159 9 | 0.174 7 | 0.189 1 | 0.219 8 | 0.198 4 | 0.202 9 | 0.320 3 | 0.353 5 | 0.390 2 | 2.6 |
SC | Tmall | Beibei | Jdata | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | ||
√ | 0.025 8 | 0.011 7 | 0.039 4 | 0.017 2 | 0.014 9 | 0.008 4 | 0.033 7 | 0.010 6 | 0.163 9 | 0.089 2 | 0.220 1 | 0.102 8 | |
√ | 0.119 4 | 0.062 2 | 0.170 3 | 0.074 7 | 0.042 8 | 0.018 1 | 0.077 2 | 0.025 5 | 0.445 7 | 0.237 8 | 0.517 1 | 0.275 1 | |
√ | √ | 0.150 2 | 0.080 1 | 0.213 6 | 0.095 6 | 0.069 4 | 0.034 3 | 0.118 0 | 0.046 4 | 0.541 1 | 0.329 2 | 0.651 5 | 0.364 8 |
Tab. 3 Influence of different designs on residual block
SC | Tmall | Beibei | Jdata | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | ||
√ | 0.025 8 | 0.011 7 | 0.039 4 | 0.017 2 | 0.014 9 | 0.008 4 | 0.033 7 | 0.010 6 | 0.163 9 | 0.089 2 | 0.220 1 | 0.102 8 | |
√ | 0.119 4 | 0.062 2 | 0.170 3 | 0.074 7 | 0.042 8 | 0.018 1 | 0.077 2 | 0.025 5 | 0.445 7 | 0.237 8 | 0.517 1 | 0.275 1 | |
√ | √ | 0.150 2 | 0.080 1 | 0.213 6 | 0.095 6 | 0.069 4 | 0.034 3 | 0.118 0 | 0.046 4 | 0.541 1 | 0.329 2 | 0.651 5 | 0.364 8 |
方法 | Tmall | Beibei | Jdata | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | |
0.102 8 | 0.053 5 | 0.151 6 | 0.065 6 | 0.030 7 | 0.015 1 | 0.076 5 | 0.019 4 | 0.335 1 | 0.193 4 | 0.356 2 | 0.229 7 | |
0.150 2 | 0.080 1 | 0.213 6 | 0.095 6 | 0.069 4 | 0.034 3 | 0.118 0 | 0.046 4 | 0.541 1 | 0.329 2 | 0.651 5 | 0.364 8 |
Tab. 4 Influence of embedding learning in global graph G
方法 | Tmall | Beibei | Jdata | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | |
0.102 8 | 0.053 5 | 0.151 6 | 0.065 6 | 0.030 7 | 0.015 1 | 0.076 5 | 0.019 4 | 0.335 1 | 0.193 4 | 0.356 2 | 0.229 7 | |
0.150 2 | 0.080 1 | 0.213 6 | 0.095 6 | 0.069 4 | 0.034 3 | 0.118 0 | 0.046 4 | 0.541 1 | 0.329 2 | 0.651 5 | 0.364 8 |
方法 | Tmall | Beibei | Jdata | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | |
0.108 4 | 0.065 8 | 0.168 2 | 0.071 5 | 0.552 7 | 0.027 3 | 0.101 9 | 0.031 7 | 0.447 0 | 0.259 9 | 0.583 3 | 0.307 0 | |
0.135 3 | 0.071 9 | 0.184 3 | 0.082 2 | 0.060 2 | 0.029 7 | 0.107 8 | 0.037 9 | 0.519 3 | 0.302 5 | 0.607 8 | 0.346 3 | |
0.150 2 | 0.080 1 | 0.213 6 | 0.095 6 | 0.069 4 | 0.034 3 | 0.118 0 | 0.046 4 | 0.541 1 | 0.329 2 | 0.649 5 | 0.364 8 | |
0.135 9 | 0.073 6 | 0.193 2 | 0.077 5 | 0.061 1 | 0.029 3 | 0.082 7 | 0.032 9 | 0.485 6 | 0.289 1 | 0.581 7 | 0.298 1 | |
0.145 3 | 0.078 3 | 0.202 8 | 0.083 1 | 0.063 0 | 0.031 2 | 0.097 2 | 0.038 2 | 0.503 2 | 0.318 0 | 0.598 2 | 0.345 0 | |
0.150 2 | 0.080 1 | 0.213 6 | 0.095 6 | 0.069 4 | 0.034 3 | 0.118 0 | 0.046 4 | 0.541 1 | 0.329 2 | 0.651 5 | 0.364 8 |
Tab. 5 Influence of aggregation strategies
方法 | Tmall | Beibei | Jdata | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | HR@10 | NDCG@10 | HR@20 | NDCG@20 | |
0.108 4 | 0.065 8 | 0.168 2 | 0.071 5 | 0.552 7 | 0.027 3 | 0.101 9 | 0.031 7 | 0.447 0 | 0.259 9 | 0.583 3 | 0.307 0 | |
0.135 3 | 0.071 9 | 0.184 3 | 0.082 2 | 0.060 2 | 0.029 7 | 0.107 8 | 0.037 9 | 0.519 3 | 0.302 5 | 0.607 8 | 0.346 3 | |
0.150 2 | 0.080 1 | 0.213 6 | 0.095 6 | 0.069 4 | 0.034 3 | 0.118 0 | 0.046 4 | 0.541 1 | 0.329 2 | 0.649 5 | 0.364 8 | |
0.135 9 | 0.073 6 | 0.193 2 | 0.077 5 | 0.061 1 | 0.029 3 | 0.082 7 | 0.032 9 | 0.485 6 | 0.289 1 | 0.581 7 | 0.298 1 | |
0.145 3 | 0.078 3 | 0.202 8 | 0.083 1 | 0.063 0 | 0.031 2 | 0.097 2 | 0.038 2 | 0.503 2 | 0.318 0 | 0.598 2 | 0.345 0 | |
0.150 2 | 0.080 1 | 0.213 6 | 0.095 6 | 0.069 4 | 0.034 3 | 0.118 0 | 0.046 4 | 0.541 1 | 0.329 2 | 0.651 5 | 0.364 8 |
1 | ZHANG S, YAO L, SUN A, et al. Deep learning based recommender system: a survey and new perspectives[J]. ACM Computing Surveys, 2019, 52(1): No.5. |
2 | XU Y, ZHU L, CHENG Z, et al. Multi-feature discrete collaborative filtering for fast cold-start recommendation[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020:270-278. |
3 | KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37. |
4 | 曹健,孙浩,李海生,等. 基于深度神经网络的会话推荐研究[J]. 计算机仿真, 2023, 40(10):1-8. |
CAO J, SUN H, LI H S, et al. Deep neural networks in session-based recommendation: a survey[J]. Computer Simulation, 2023, 40(10):1-8. | |
5 | CHEN Y, TANG Y, YUAN Y. Attention-enhanced graph neural networks with global context for session-based recommendation[J]. IEEE Access, 2023, 11:26237-26246. |
6 | HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. |
7 | PENG H, ZHANG R, DOU Y, et al. Reinforced neighborhood selection guided multi-relational graph neural networks[J]. ACM Transactions on Information Systems, 2022, 40(4): No.69. |
8 | 严明时,程志勇,孙静,等. 基于两阶段学习的多行为推荐[J]. 软件学报, 2024, 35(5):2446-2465. |
YAN M S, CHENG Z Y, SUN J, et al. Two-stage learning for multi-behavior recommendation[J]. Journal of Software, 2024, 35(5):2446-2465. | |
9 | SINGH A P, GORDON G J. Relational learning via collective matrix factorization[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008:650-658. |
10 | ZHAO Z, CHENG Z, HONG L, et al. Improving user topic interest profiles by behavior factorization[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015:1406-1416. |
11 | LONI B, PAGANO R, LARSON M, et al. Bayesian personalized ranking with multi-channel user feedback[C]// Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 361-364. |
12 | DING J, YU G, HE X, et al. Improving implicit recommender systems with view data[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 3343-3349. |
13 | GUO G, QIU H, TAN Z, et al. Resolving data sparsity by multi-type auxiliary implicit feedback for recommender systems[J]. Knowledge-Based Systems, 2017, 138:202-207. |
14 | QIU H, LIU Y, GUO G, et al. BPRH: Bayesian personalized ranking for heterogeneous implicit feedback[J]. Information Sciences, 2018, 453: 80-98. |
15 | DONG Y, JIANG W. Brand purchase prediction based on time-evolving user behaviors in e-commerce[J]. Concurrency and Computation: Practice and Experience, 2019, 31(1): No.e4882. |
16 | XIA L, HUANG C, XU Y, et al. Multiplex behavioral relation learning for recommendation via memory augmented transformer network[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020:2397-2406. |
17 | GUO L, HUA L, JIA R, et al. Buying or browsing? predicting real-time purchasing intent using attention-based deep network with multiple behavior[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019:1984-1992. |
18 | GAO G, HE X, GAN D, et al. Learning to recommend with multiple cascading behaviors[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6): 2588-2601. |
19 | 李驰,游小钰,张谧. 基于解耦图卷积网络的协同过滤推荐模型[J]. 中文信息学报, 2023, 37(11):131-141. |
LI C, YOU X Y, ZHANG M. Decoupled graph convolution network for collaborative filtering[J]. Journal of Chinese Information Processing, 2023, 37(11):131-141. | |
20 | YAN M, CHENG Z, SUN J, et al. MB-HGCN: a hierarchical graph convolutional network for multi-behavior recommendation[EB/OL]. [2024-02-20].. |
21 | WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019:165-174. |
22 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020:639-648. |
23 | WANG X, JIN H, ZHANG A, et al. Disentangled graph collaborative filtering[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020:1001-1010. |
24 | JIN B, GAO C, HE X, et al. Multi-behavior recommendation with graph convolutional networks[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020:659-668. |
25 | XIA L, HUANG C, XU Y, et al. Multi-behavior enhanced recommendation with cross-interaction collaborative relation modeling[C]// Proceedings of the IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021:1931-1936. |
26 | ZHANG W, MAO J, CAO Y, et al. Multiplex graph neural networks for multi-behavior recommendation[C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020:2313-2316. |
27 | YAN M, CHENG Z, GAO C, et al. Cascading residual graph convolutional network for multi-behavior recommendation[J]. ACM Transactions on Information Systems, 2024, 42(1): No.10. |
28 | 曹磊亮,谢瑾奎,郭天晟. 结合残差网络和噪声处理的节点分类模型[J]. 小型微型计算机系统, 2024, 45(6):1331-1338. |
CAO L L, XIE J K, GUO T S. Node classification models combining residual networks and noise processing[J]. Journal of Chinese Computer Systems, 2024, 45(6):1331-1338. | |
29 | 唐宇,吴贞东. 基于残差网络的轻量级图卷积推荐方法[J]. 计算机工程与应用, 2024, 60(3):205-212. |
TANG Y, WU Z D. Light graph convolution recommendation method based on residual network[J]. Computer Engineering and Applications, 2024, 60(3):205-212. | |
30 | TANG H, LIU J, ZHAO M, et al. Progressive Layered Extraction (PLE): a novel Multi-Task Learning (MTL) model for personalized recommendations[C]// Proceedings of the 14th ACM Conference on Recommender Systems. New York: ACM, 2020:269-278. |
31 | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th International Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009:452-461. |
32 | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]// Proceedings of the 2018 European Semantic Web Conference, LNCS 10843. Cham: Springer, 2018:593-607. |
33 | GU S, WANG X, SHI C, et al. Self-supervised graph neural networks for multi-behavior recommendation[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 2052-2058. |
[1] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[2] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[3] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[4] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[5] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[6] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[7] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
[8] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
[9] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. |
[10] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. |
[11] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. |
[12] | Nengqiang XIANG, Xiaofei ZHU, Zhaoze GAO. Information diffusion prediction model of prototype-aware dual-channel graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(10): 3260-3266. |
[13] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. |
[14] | Wanting JI, Wenyi LU, Yuhang MA, Linlin DING, Baoyan SONG, Haolin ZHANG. Machine reading comprehension event detection based on relation-enhanced graph convolutional network [J]. Journal of Computer Applications, 2024, 44(10): 3288-3293. |
[15] | Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism [J]. Journal of Computer Applications, 2024, 44(1): 311-317. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||