Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1645-1657.DOI: 10.11772/j.issn.1001-9081.2024050568
• Multimedia computing and computer simulation • Previous Articles
					
						                                                                                                                                                                                                                                                    Yali YANG1, Ying LI1,2,3( ), Yutao ZHANG1, Peihua SONG1,2,3
), Yutao ZHANG1, Peihua SONG1,2,3
												  
						
						
						
					
				
Received:2024-05-09
															
							
																	Revised:2024-07-10
															
							
																	Accepted:2024-07-31
															
							
							
																	Online:2024-08-23
															
							
																	Published:2025-05-10
															
							
						Contact:
								Ying LI   
													About author:YANG Yali, born in 1998, M. S. candidate. Her research interests include face recognition, computer vision.Supported by:
        
                   
            杨雅莉1, 黎英1,2,3( ), 章育涛1, 宋佩华1,2,3
), 章育涛1, 宋佩华1,2,3
                  
        
        
        
        
    
通讯作者:
					黎英
							作者简介:杨雅莉(1998—),女,河南信阳人,硕士研究生,主要研究方向:人脸识别、计算机视觉基金资助:CLC Number:
Yali YANG, Ying LI, Yutao ZHANG, Peihua SONG. Review of multi-modal research methods for face recognition[J]. Journal of Computer Applications, 2025, 45(5): 1645-1657.
杨雅莉, 黎英, 章育涛, 宋佩华. 面向人脸识别的多模态研究方法综述[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1645-1657.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050568
| 方法 | 优势 | 局限性 | 适用场景 | 
|---|---|---|---|
| 特征串联 | 操作简单,时间成本低; 不会造成单模态信息丢失, 能够提升识别准确率 | 存在信息冗余、模态差距问题; 会造成后续分类器性能降低 | 具备多种传感器或多模态信息来源 的人脸识别 | 
| 特征加权 | 对重要特征进行加权,提升了组合特征的质量 | 特征权重的设置对最终的融合 特征影响较大 | 特征数量有限、信息冗余情况下的 人脸识别 | 
| 特征融合 | 根据多模态信息之间的相关性选择性地学习有用 的信息,提升组合特征质量 | 存在单模态信息丢失问题; 计算成本较高 | 特征数量较多、精确度要求高的 人脸识别 | 
| 特征层融合 | 获得具有更多面部细节的深度图像,进而获得更多 互补特征; 更好地捕捉不同模态特征间的相关性 | 网络分层提取特征会丢失部分信息; 获取到的特征可解释性较差 | 单一传感器或复杂场景下的人脸 识别 | 
Tab. 1 Summary and comparison of feature-level multi-modal face recognition methods
| 方法 | 优势 | 局限性 | 适用场景 | 
|---|---|---|---|
| 特征串联 | 操作简单,时间成本低; 不会造成单模态信息丢失, 能够提升识别准确率 | 存在信息冗余、模态差距问题; 会造成后续分类器性能降低 | 具备多种传感器或多模态信息来源 的人脸识别 | 
| 特征加权 | 对重要特征进行加权,提升了组合特征的质量 | 特征权重的设置对最终的融合 特征影响较大 | 特征数量有限、信息冗余情况下的 人脸识别 | 
| 特征融合 | 根据多模态信息之间的相关性选择性地学习有用 的信息,提升组合特征质量 | 存在单模态信息丢失问题; 计算成本较高 | 特征数量较多、精确度要求高的 人脸识别 | 
| 特征层融合 | 获得具有更多面部细节的深度图像,进而获得更多 互补特征; 更好地捕捉不同模态特征间的相关性 | 网络分层提取特征会丢失部分信息; 获取到的特征可解释性较差 | 单一传感器或复杂场景下的人脸 识别 | 
| 方法 | 优势 | 局限性 | 适用场景 | 
|---|---|---|---|
| 求和规则 | 操作简单、容易理解和实现; 具有广泛的适用性且无须参数调整 | 模态相差较大会导致模态不平衡; 无法捕捉到多模态之间的相关性和互补性,可能导致信息损失 | 模态之间相关性较低、任务 简单的人脸识别 | 
| 自适应融合 | 自适应地学习特征权重,以获得丰富的模态关联信息; 融合特征具有高判别性,灵活性较高 | 需要大量数据支持; 算法复杂度高,具有 过拟合风险 | 多模态信息复杂、动态 多样化情况下的人脸识别 | 
Tab. 2 Summary and comparison of scoring-level multi-modal face recognition methods
| 方法 | 优势 | 局限性 | 适用场景 | 
|---|---|---|---|
| 求和规则 | 操作简单、容易理解和实现; 具有广泛的适用性且无须参数调整 | 模态相差较大会导致模态不平衡; 无法捕捉到多模态之间的相关性和互补性,可能导致信息损失 | 模态之间相关性较低、任务 简单的人脸识别 | 
| 自适应融合 | 自适应地学习特征权重,以获得丰富的模态关联信息; 融合特征具有高判别性,灵活性较高 | 需要大量数据支持; 算法复杂度高,具有 过拟合风险 | 多模态信息复杂、动态 多样化情况下的人脸识别 | 
| 方法 | 优势 | 局限性 | 适用场景 | 
|---|---|---|---|
| 多数投票 | 简单直观、容易理解; 实用性强 | 存在信息冗余、模态差距问题; 会造成后续分类器性能降低 | 具备多人脸传感器或多模态 信息来源的人脸识别 | 
| 求和规则 | 对重要特征加权,提升了组合特征的质量 | 特征权重的设置对最终的融合 特征影响较大 | 特征数有限、信息冗余 情况下的人脸识别 | 
| 混合规则 | 获得具有更多面部细节的深度图像,进而获得更多互补特征; 更好地捕捉到不同模态或者不同特征之间的相关性 | 网络分层提取会丢失部分信息; 计算成本增加 | 单一传感器或复杂场景下的 人脸识别 | 
Tab. 3 Summary and comparison of decision-level multi-modal face recognition methods
| 方法 | 优势 | 局限性 | 适用场景 | 
|---|---|---|---|
| 多数投票 | 简单直观、容易理解; 实用性强 | 存在信息冗余、模态差距问题; 会造成后续分类器性能降低 | 具备多人脸传感器或多模态 信息来源的人脸识别 | 
| 求和规则 | 对重要特征加权,提升了组合特征的质量 | 特征权重的设置对最终的融合 特征影响较大 | 特征数有限、信息冗余 情况下的人脸识别 | 
| 混合规则 | 获得具有更多面部细节的深度图像,进而获得更多互补特征; 更好地捕捉到不同模态或者不同特征之间的相关性 | 网络分层提取会丢失部分信息; 计算成本增加 | 单一传感器或复杂场景下的 人脸识别 | 
| 方法 | 优势 | 局限性 | 适用场景 | 
|---|---|---|---|
| 基于 传统技术 | 具有较强的解释性,稳定性较高,计算成本较低; 能够将2D人脸细节和3D人脸模型有效结合 | 特征提取和表达能力有限; 对输入数据的质量 要求较高; 对复杂场景的动态适应能力较差 | 受控环境下且对可解释性要求较高的3D人脸识别 | 
| 基于 深度学习 | 自动学习和提取原图像高度抽象特征,并将原图像 转换为其他模态; 综合利用多种模态信息,具有 较强的适应性 | 需要大量数据进行训练,计算成本较高; 所得特征的可解释性较低; 获得的多模态特征相对有限 | 高安全性需求、高准确率要求下的3D人脸识别 | 
Tab. 4 Summary and comparison of 2D-3D information-enhanced multi-modal face recognition methods
| 方法 | 优势 | 局限性 | 适用场景 | 
|---|---|---|---|
| 基于 传统技术 | 具有较强的解释性,稳定性较高,计算成本较低; 能够将2D人脸细节和3D人脸模型有效结合 | 特征提取和表达能力有限; 对输入数据的质量 要求较高; 对复杂场景的动态适应能力较差 | 受控环境下且对可解释性要求较高的3D人脸识别 | 
| 基于 深度学习 | 自动学习和提取原图像高度抽象特征,并将原图像 转换为其他模态; 综合利用多种模态信息,具有 较强的适应性 | 需要大量数据进行训练,计算成本较高; 所得特征的可解释性较低; 获得的多模态特征相对有限 | 高安全性需求、高准确率要求下的3D人脸识别 | 
| 方法 | 优势 | 局限性 | 适用场景 | 
|---|---|---|---|
| 传统技术 | 能够实现3D模型到2D图像的精准匹配 | 获取到的3D特征有限,存在3D信息丢失问题 | 受控环境下资源有限的2D人脸识别 | 
| 深度学习 | 有效提取2D和3D人脸的高度抽象特征,具有较强的泛化能力 | 需要进行3D人脸重建,计算成本较高,模型 可解释性较差 | 高安全性需求且缺乏3D信息来源的2D人脸识别 | 
Tab. 5 Summary and comparison of 3D-2D information-enhanced multi-modal face recognition methods
| 方法 | 优势 | 局限性 | 适用场景 | 
|---|---|---|---|
| 传统技术 | 能够实现3D模型到2D图像的精准匹配 | 获取到的3D特征有限,存在3D信息丢失问题 | 受控环境下资源有限的2D人脸识别 | 
| 深度学习 | 有效提取2D和3D人脸的高度抽象特征,具有较强的泛化能力 | 需要进行3D人脸重建,计算成本较高,模型 可解释性较差 | 高安全性需求且缺乏3D信息来源的2D人脸识别 | 
| 融合策略 | 模态 | 优势 | 局限性 | 
|---|---|---|---|
| 特征级 | 人脸、耳朵 | 将不同生物特征提取的特征直接融合,充分利用信息,能够提高识别的准确性和鲁棒性; 简单直观,易于理解,不需要复杂的算法和模型,实际应用中能够快速部署 | 不同生物特征的特征表达能力不同,可能导致一些 特征对整体识别结果的贡献较小; 无法捕捉特征间 的复杂非线性关系,可能导致信息丢失 | 
| 人脸、指纹 | |||
| 人脸、步态 | |||
| 评分级 | 人脸、语音 | 通过学习各种生物特征的权重或得分,动态地权衡不同特征对识别结果的贡献; 根据具体应用场景和数据情况调整,具有较强的适应性 | 通常需要大量的标注数据进行训练,以学习各种生物特征的权重或得分,在实际应用中会受到限制; 在 数据量较小或特征间关系复杂时存在过拟合的风险 | 
| 人脸、指纹 | |||
| 3D人脸、3D耳朵 | |||
| 混合策略 | 人脸、语音 | 能够综合利用特征级、评分级、决策级等不同融合策略的优势,克服各自的局限性; 具有较强的灵活性,可以 根据具体应用场景和需求选择合适的融合策略 | 需要同时考虑多种融合方法的组合和调优,增加了 系统的复杂度; 涉及多个融合方法的参数调优, 时间成本较高 | 
| 人脸、虹膜 | 
Tab. 6 Summary and comparison of multi-modal face recognition methods based on other biometric features
| 融合策略 | 模态 | 优势 | 局限性 | 
|---|---|---|---|
| 特征级 | 人脸、耳朵 | 将不同生物特征提取的特征直接融合,充分利用信息,能够提高识别的准确性和鲁棒性; 简单直观,易于理解,不需要复杂的算法和模型,实际应用中能够快速部署 | 不同生物特征的特征表达能力不同,可能导致一些 特征对整体识别结果的贡献较小; 无法捕捉特征间 的复杂非线性关系,可能导致信息丢失 | 
| 人脸、指纹 | |||
| 人脸、步态 | |||
| 评分级 | 人脸、语音 | 通过学习各种生物特征的权重或得分,动态地权衡不同特征对识别结果的贡献; 根据具体应用场景和数据情况调整,具有较强的适应性 | 通常需要大量的标注数据进行训练,以学习各种生物特征的权重或得分,在实际应用中会受到限制; 在 数据量较小或特征间关系复杂时存在过拟合的风险 | 
| 人脸、指纹 | |||
| 3D人脸、3D耳朵 | |||
| 混合策略 | 人脸、语音 | 能够综合利用特征级、评分级、决策级等不同融合策略的优势,克服各自的局限性; 具有较强的灵活性,可以 根据具体应用场景和需求选择合适的融合策略 | 需要同时考虑多种融合方法的组合和调优,增加了 系统的复杂度; 涉及多个融合方法的参数调优, 时间成本较高 | 
| 人脸、虹膜 | 
| 融合策略 | 方法 | 优势 | 局限性 | 
|---|---|---|---|
| 传感器级 | 图像融合 | 结合多种传感器获取的不同模态数据,单一模态缺失不会 造成太大影响; 增强了系统的鲁棒性和抗欺诈性 | 使用多种传感器,成本增加; 数据融合的过程较 复杂,需要考虑数据的对齐、校准等 | 
| 特征级 | 特征层融合 | 神经网络可以提取更丰富的特征,多个神经网络可以满足 不同特征的处理需求; 并行提取特征提高了处理效率 | 多个神经网络的设计和调优比单一网络更复杂; 融合策略和参数设置较困难,计算成本较高 | 
| 评分级 | 自适应融合 | 根据数据的特性和识别需求动态调整不同特征的权重,具有 较强的适应性和鲁棒性; 不需要人为设定特征权重或得分, 自动化程度较高 | 需要大量的标注数据进行训练,以学习特征权重或得分; 在数据量较小或特征间关系复杂情况下可能存在过拟合的风险 | 
| 多层次融合 | 可以综合利用低层次的底层特征和高层次的抽象特征, 从而更全面地描述数据的特征; 在处理复杂数据时具有优势 | 融合策略和参数设置较复杂; 会增加系统的计算 资源需求 | 
Tab. 7 Summary and comparison of multi-modal face recognition methods for anti-spoofing
| 融合策略 | 方法 | 优势 | 局限性 | 
|---|---|---|---|
| 传感器级 | 图像融合 | 结合多种传感器获取的不同模态数据,单一模态缺失不会 造成太大影响; 增强了系统的鲁棒性和抗欺诈性 | 使用多种传感器,成本增加; 数据融合的过程较 复杂,需要考虑数据的对齐、校准等 | 
| 特征级 | 特征层融合 | 神经网络可以提取更丰富的特征,多个神经网络可以满足 不同特征的处理需求; 并行提取特征提高了处理效率 | 多个神经网络的设计和调优比单一网络更复杂; 融合策略和参数设置较困难,计算成本较高 | 
| 评分级 | 自适应融合 | 根据数据的特性和识别需求动态调整不同特征的权重,具有 较强的适应性和鲁棒性; 不需要人为设定特征权重或得分, 自动化程度较高 | 需要大量的标注数据进行训练,以学习特征权重或得分; 在数据量较小或特征间关系复杂情况下可能存在过拟合的风险 | 
| 多层次融合 | 可以综合利用低层次的底层特征和高层次的抽象特征, 从而更全面地描述数据的特征; 在处理复杂数据时具有优势 | 融合策略和参数设置较复杂; 会增加系统的计算 资源需求 | 
| 数据集 | 数据类型 | 主体数量 | 图片数 | 扫描设备 | 发布年份 | 
|---|---|---|---|---|---|
| FRGC v1.0[ | 深度图 | 1 024 | 50 000 | Minolta Vivid 3D 扫描仪 | 2002 | 
| FRGC v2.0[ | 深度图 | 466 | 4 007 | Minolta Vivid 3D 扫描仪 | 2005 | 
| BU-3DFE[ | 网格 | 100 | 2 500 | 立体摄影、3DMD 数字化仪 | 2006 | 
| ND-2006[ | 深度图 | 888 | 13 450 | Minolta Vivid 910 测距扫描仪 | 2007 | 
| Bosphorus[ | 点云 | 105 | 4 652 | Inspeck Mega Capturor Ⅱ 三维扫描仪 | 2008 | 
| Texas 3D[ | 深度图 | 118 | 1 149 | MU-2立体成像系统 | 2010 | 
| UMB-DB[ | 深度图 | 143 | 1 473 | Minolta Vivid 900激光扫描仪 | 2011 | 
| CASIA 3D[ | 深度图 | 123 | 4 059 | Minolta Vivid 910 测距扫描仪 | 2015 | 
Tab. 8 Commonly used datasets for 2D+3D multi-modal face recognition
| 数据集 | 数据类型 | 主体数量 | 图片数 | 扫描设备 | 发布年份 | 
|---|---|---|---|---|---|
| FRGC v1.0[ | 深度图 | 1 024 | 50 000 | Minolta Vivid 3D 扫描仪 | 2002 | 
| FRGC v2.0[ | 深度图 | 466 | 4 007 | Minolta Vivid 3D 扫描仪 | 2005 | 
| BU-3DFE[ | 网格 | 100 | 2 500 | 立体摄影、3DMD 数字化仪 | 2006 | 
| ND-2006[ | 深度图 | 888 | 13 450 | Minolta Vivid 910 测距扫描仪 | 2007 | 
| Bosphorus[ | 点云 | 105 | 4 652 | Inspeck Mega Capturor Ⅱ 三维扫描仪 | 2008 | 
| Texas 3D[ | 深度图 | 118 | 1 149 | MU-2立体成像系统 | 2010 | 
| UMB-DB[ | 深度图 | 143 | 1 473 | Minolta Vivid 900激光扫描仪 | 2011 | 
| CASIA 3D[ | 深度图 | 123 | 4 059 | Minolta Vivid 910 测距扫描仪 | 2015 | 
| 1 | PENG C, WANG N, LI J, et al. DLFace: deep local descriptor for cross-modality face recognition[J]. Pattern Recognition, 2019, 90: 161-171. | 
| 2 | LIU D, GAO X, WANG N, et al. Coupled attribute learning for heterogeneous face recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4699-4712. | 
| 3 | 徐遐龄,刘涛,田国辉,等. 有遮挡环境下的人脸识别方法综述[J]. 计算机工程与应用, 2021, 57(17):46-60. | 
| XU X L, LIU T, TIAN G H, et al. Review of occlusion face recognition methods[J]. Computer Engineering and Applications, 2021, 57(17): 46-60. | |
| 4 | 刘力,龚勇,赵国强. 三维人脸识别研究进展[J]. 计算机工程与应用, 2023, 59(23):28-47. | 
| LIU L, GONG Y, ZHAO G Q. Research progress in three-dimensional face recognition[J]. Computer Engineering and Applications, 2023, 59(23): 28-47. | |
| 5 | YU Z, QIN Y, LI X, et al. Deep learning for face anti-spoofing: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5609-5631. | 
| 6 | PATTNAIK I, DEV A, MOHAPATRA A K. A face recognition taxonomy and review framework towards dimensionality, modality and feature quality[J]. Engineering Applications of Artificial Intelligence, 2023, 126(Pt C): No.107056. | 
| 7 | QIN Z, ZHAO P, ZHUANG T, et al. A survey of identity recognition via data fusion and feature learning[J]. Information Fusion, 2023, 91: 694-712. | 
| 8 | JIANG X, MA J, XIAO G, et al. A review of multimodal image matching: methods and applications[J]. Information Fusion, 2021, 73: 22-71. | 
| 9 | ZHANG H, XU H, TIAN X, et al. Image fusion meets deep learning: a survey and perspective[J]. Information Fusion, 2021, 76: 323-336. | 
| 10 | PUROHIT H, AJMERA P K. Optimal feature level fusion for secured human authentication in multimodal biometric system[J]. Machine Vision and Applications, 2021, 32: No.24. | 
| 11 | ZHANG J, JIAO L, MA W, et al. Transformer based conditional GAN for multimodal image fusion[J]. IEEE Transactions on Multimedia, 2023, 25: 8988-9001. | 
| 12 | LI W, ZHANG Y, WANG G, et al. DFENet: a dual-branch feature enhanced network integrating Transformers and convolutional feature learning for multimodal medical image fusion[J]. Biomedical Signal Processing and Control, 2023, 80(Pt 2): No.104402. | 
| 13 | CHANDRAKALA M, DEVI P D. Two-stage classifier for face recognition using HOG features[J]. Materials Today: Proceedings, 2021, 47(Pt 17): 5771-5775. | 
| 14 | AGGARWAL A, ALSHEHRI M, KUMAR M, et al. Principal component analysis, hidden Markov model, and artificial neural network inspired techniques to recognize faces[J]. Concurrency and Computation: Practice and Experience, 2021, 33(9): No.e6157. | 
| 15 | ABUSHAM E, IBRAHIM B, ZIA K, et al. Facial image encryption for secure face recognition system[J]. Electronics, 2023, 12(3): No.774. | 
| 16 | GUPTA S, THAKUR K, KUMAR M. 2D-human face recognition using SIFT and SURF descriptors of face’s feature regions[J]. The Visual Computer, 2021, 37(3): 447-456. | 
| 17 | HAMMOUCHE R, ATTIA A, AKHROUF S, et al. Gabor filter bank with deep autoencoder based face recognition system[J]. Expert Systems with Applications, 2022, 197: No.116743. | 
| 18 | KARANWAL S, DIWAKAR M. OD-LBP: orthogonal difference-local binary pattern for face recognition[J]. Digital Signal Processing, 2021, 110: No.102948. | 
| 19 | BAYOUDH K, KNANI R, HAMDAOUI F, et al. A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets[J]. The Visual Computer, 2022, 38(8): 2939-2970. | 
| 20 | KAUR H, KOUNDAL D, KADYAN V. Image fusion techniques: a survey[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4425-4447. | 
| 21 | HUANG Z H, LI W J, WANG J, et al. Face recognition based on pixel-level and feature-level fusion of the top-level’s wavelet sub-bands[J]. Information Fusion, 2015, 22: 95-104. | 
| 22 | TISTARELLI M, CADONI M, LAGORIO A, et al. Blending 2D and 3D face recognition[M]// BOURLAI T. Face recognition across the imaging spectrum. Cham: Springer, 2016: 305-331. | 
| 23 | ZHANG H, LI Q, SUN Z. Adversarial learning semantic volume for 2D/3D face shape regression in the wild[J]. IEEE Transactions on Image Processing, 2019, 28(9): 4526-4540. | 
| 24 | CHEN P, LI X, WANG W. Improving occluded face recognition with image fusion[C]// Proceedings of the 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Piscataway: IEEE, 2020: 259-265. | 
| 25 | XIAO G, BAVIRISETTI D P, LIU G, et al. Feature-level image fusion[M]// Image fusion. Singapore: Springer, 2020: 103-147. | 
| 26 | LUMINI A, NANNI L. Overview of the combination of biometric matchers[J]. Information Fusion, 2017, 33: 71-85. | 
| 27 | JIANG L, ZHANG J, LI C, et al. RGB-D face recognition via spatial and channel attentions[C]// Proceedings of the IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference. Piscataway: IEEE, 2021: 2037-2041. | 
| 28 | SEPAS-MOGHADDAM A, CORREIA P L, NASROLLAHI K, et al. Light field based face recognition via a fused deep representation[C]// Proceedings of the IEEE 28th International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2018: 1-6. | 
| 29 | ZHANG X, ZHAO Y, ZHANG H. MixNet face recognition how combing 2D and 3D data can increase the precision[J]. IOP Conference Series: Materials Science and Engineering, 2020, 782(5): No.052037. | 
| 30 | LI C, HUANG W, HUANG Y. Gabor Log-Euclidean Gaussian and its fusion with deep network based on self-attention for face recognition[J]. Applied Soft Computing, 2022, 116: No.108210. | 
| 31 | GAO G, XU Z, LI J, et al. CTCNet: a CNN-transformer cooperation network for face image super-resolution[J]. IEEE Transactions on Image Processing, 2023, 32: 1978-1991. | 
| 32 | TIONG L C O, KIM S T, RO Y M. Multimodal facial biometrics recognition: dual-stream convolutional neural networks with multi-feature fusion layers[J]. Image and Vision Computing, 2020, 102: No.103977. | 
| 33 | CHAROQDOUZ E, HASSANPOUR H. Feature extraction from several angular faces using a deep learning based fusion technique for face recognition[J]. International Journal of Engineering, 2023, 36(8): 1548-1555. | 
| 34 | UPPAL H, SEPAS-MOGHADDAM A, GREENSPAN M, et al. Two-level attention-based fusion learning for RGB-D face recognition[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 10120-10127. | 
| 35 | AlFAWWAZ B M, AL-SHATNAWI A, AL-SAQQAR F, et al. Face recognition system based on the multi-resolution singular value decomposition fusion technique[J]. International Journal of Data and Network Science, 2022, 6(4): 1249-1260. | 
| 36 | SUN Z, MIAO Y, JEON J Y, et al. Facial feature fusion convolutional neural network for driver fatigue detection[J]. Engineering Applications of Artificial Intelligence, 2023, 126(Pt C): No.106981. | 
| 37 | ZHANG J, YAN X, CHENG Z, et al. A face recognition algorithm based on feature fusion[J]. Concurrency and Computation: Practice and Experience, 2022, 34(14): No.e5748. | 
| 38 | 陈北京,王鹏,喻乐延,等.注意力融合双流特征的局部GAN生成人脸检测算法[J].东南大学学报(自然科学版),2023,53(3):543-551. | 
| CHEN B J, WANG P, YU L Y, et al. Locally GAN-generated face detection algorithm based on dual-stream features fused by attention[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(3): 543-551. | |
| 39 | XU R, WANG K, DENG C, et al. Depth map denoising network and lightweight fusion network for enhanced 3D face recognition[J]. Pattern Recognition, 2024, 145: No.109936. | 
| 40 | ZHANG P, TAN L, YANG Z, et al. Device-edge collaborative occluded face recognition method based on cross-domain feature fusion[J/OL]. Digital Communications and Networks [2025-02-07]. . | 
| 41 | SOLTANPOUR S, WU Q J. Multimodal 2D-3D face recognition using local descriptors: pyramidal shape map and structural context[J]. IET Biometrics, 2017, 6: 27-35. | 
| 42 | OUAMANE A, BOUTELLAA E, BENGHERABI M, et al. A novel statistical and multiscale local binary feature for 2D and 3D face verification[J]. Computers and Electrical Engineering, 2017, 62: 68-80. | 
| 43 | YANG H, WANG T, YIN L. Adaptive multimodal fusion for facial action units recognition[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 2982-2990. | 
| 44 | XU J, XUE X, WU Y, et al. Matching a composite sketch to a photographed face using fused HOG and deep feature models[J]. The Visual Computer, 2021, 37(4): 765-776. | 
| 45 | SINGH S, SINGH H, BUENO G, et al. A review of image fusion: Methods, applications and performance metrics[J]. Digital Signal Processing, 2023, 137: No.104020. | 
| 46 | AISSAOUI A, MARTINET J. Bi-modal face recognition — how combining 2D and 3D clues can increase the precision[C]// Proceedings of the 10th International Conference on Computer Vision Theory and Applications — Volume 2: VISAPP. Setúbal: SciTePress, 2015: 559-564. | 
| 47 | XIE Z, SHI L, LI Y. Two-stage fusion of local binary pattern and discrete cosine transform for infrared and visible face recognition[C]// Proceedings of the 2020 International Conference on Intelligent, Interactive Systems and Applications, AISC 1304. Cham: Springer, 2021: 967-975. | 
| 48 | ALSHAHRANI A A, JAHA E S, ALOWIDI N. Fusion of hash-based hard and soft biometrics for enhancing face image database search and retrieval[J]. Computers, Materials and Continua, 2023, 77(3):3489-3509. | 
| 49 | SING J K, DEY A, GHOSH M. Confidence factor weighted Gaussian function induced parallel fuzzy rank-level fusion for inference and its application to face recognition[J]. Information Fusion, 2019, 47: 60-71. | 
| 50 | KUMAR S, SINGH S K. Occluded thermal face recognition using Bag Of CNN (BoCNN)[J]. IEEE Signal Processing Letters, 2020, 27: 975-979. | 
| 51 | TORKHANI G, LADGHAM A, SAKLY A, et al. A 3D-2D face recognition method based on extended Gabor wavelet combining curvature and edge detection[J]. Signal, Image and Video Processing, 2017, 11(5): 969-976. | 
| 52 | DANNER M, WEBER T, HUBER P, et al. Evolutional normal maps: 3D face representations for 2D-3D face recognition, face modelling and data augmentation[C]// Proceedings of the 17th International Conference on Computer Vision Theory and Applications — Volume 5: VISAPP. Setúbal: SciTePress 2022: 267-274. | 
| 53 | NIU W, ZHAO Y, YU Z, et al. Research on a face recognition algorithm based on 3D face data and 2D face image matching[J]. Journal of Visual Communication and Image Representation, 2023, 91: No.103757. | 
| 54 | JIN B, CRUZ L, GONÇALVES N. Pseudo RGB-D face recognition[J]. IEEE Sensors Journal, 2022, 22(22): 21780-21794. | 
| 55 | ZHU Y, GAO J, WU T, et al. Exploiting enhanced and robust RGB-D face representation via progressive multi-modal learning[J]. Pattern Recognition Letters, 2023, 166: 38-45. | 
| 56 | KAKADIARIS I A, TODERICI G, EVANGELOPOULOS G, et al. 3D-2D face recognition with pose and illumination normalization[J]. Computer Vision and Image Understanding, 2017, 154: 137-151. | 
| 57 | SANIL G, PRAKASH K, PRABHU S, et al. 2D-3D facial image analysis for identification of facial features using machine learning algorithms with hyper-parameter optimization for forensics applications[J]. IEEE Access, 2023, 11: 82521-82538. | 
| 58 | DI MARTINO J M, SUZACQ F, DELBRACIO M, et al. Differential 3D facial recognition: adding 3D to your state-of-the-art 2D method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(7): 1582-1593. | 
| 59 | WINARNO E, AMIN I H AL, HARTATI S, et al. Face recognition based on CNN 2D-3D reconstruction using shape and texture vectors combining[J]. Indonesian Journal of Electrical Engineering and Informatics, 2020, 8(2): 378-384. | 
| 60 | SARANGI P P, NAYAK D R, PANDA M, et al. A feature-level fusion based improved multimodal biometric recognition system using ear and profile face[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(4): 1867-1898. | 
| 61 | VEKARIYA V, JOSHI M, DIKSHIT S. Multi-biometric fusion for enhanced human authentication in information security[J]. Measurement: Sensors, 2024, 31: No.100973. | 
| 62 | 沈澍,张文昊,王汝传,等. 人脸和步态特征注意力融合的身份识别方法[J]. 小型微型计算机系统, 2024, 45(7): 1695-1701. | 
| SHEN S, ZHANG W H, WANG R C, et al. Human face and gait feature attention fusion based identity recognition method[J]. Journal of Chinese Computer Systems, 2024, 45(7): 1695-1701. | |
| 63 | ZHANG X, CHENG D, JIA P, et al. An efficient android-based multimodal biometric authentication system with face and voice[J]. IEEE Access, 2020, 8: 102757-102772. | 
| 64 | ALEEM S, YANG P, MASOOD S, et al. An accurate multi-modal biometric identification system for person identification via fusion of face and finger print[J]. World Wide Web, 2020, 23: 1299-1317. | 
| 65 | THAREWAL S, MALCHE T, TIWARI P K, et al. Score-level fusion of 3D face and 3D ear for multimodal biometric human recognition[J]. Computational Intelligence and Neuroscience, 2022, 2022: No.3019194. | 
| 66 | ABOZAID A, HAGGAG A, KASBAN H, et al. Multimodal biometric scheme for human authentication technique based on voice and face recognition fusion[J]. Multimedia Tools and Applications, 2019, 78(12): 16345-16361. | 
| 67 | HATTAB A, BEHLOUL A. Face-Iris multimodal biometric recognition system based on deep learning[J]. Multimedia Tools and Applications, 2024, 83(14): 43349-43376. | 
| 68 | AMMOUR B, BOUBCHIR L, BOUDEN T, et al. Face-iris multimodal biometric identification system[J]. Electronics, 2020, 9(1): No.85. | 
| 69 | ALAY N, AL-BAITY H H. Deep learning approach for multimodal biometric recognition system based on fusion of iris, face, and finger vein traits[J]. Sensors, 2020, 20(19): No.5523. | 
| 70 | MEHRAJ H, MIR A H. Feature vector extraction and optimisation for multimodal biometrics employing face, ear and gait utilising artificial neural networks[J]. International Journal of Cloud Computing, 2020, 9(2/3): 131-149. | 
| 71 | GUPTA K, WALIA G S, SHARMA K. Quality based adaptive score fusion approach for multimodal biometric system[J]. Applied Intelligence, 2020, 50: 1086-1099. | 
| 72 | LOHITH M S, MANJUNATH Y S K, ESHWARAPPA M N. Multimodal biometric person authentication using face, ear and periocular region based on convolution neural networks[J]. International Journal of Image and Graphics, 2023, 23(2): No.2350019. | 
| 73 | KADHIM O N, ABDULAMEER M H. Biometric identification advances: unimodal to multimodal fusion of face, palm, and iris features[J]. Advances in Electrical and Computer Engineering, 2024, 24(1):91-98. | 
| 74 | GEORGE A, MOSTAANI Z, GEISSENBUHLER D, et al. Biometric face presentation attack detection with multi-channel convolutional neural network[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 42-55. | 
| 75 | YU P, WANG J, CAO N, et al. Research on face anti-spoofing algorithm based on image fusion[J]. Computers, Materials and Continua, 2021, 68(3): 3861-3876. | 
| 76 | 马欣,吉立新,李邵梅. 基于多尺度Transformer融合多域信息的伪造人脸检测[J]. 计算机科学, 2023, 50(10):112-118. | 
| MA X, JI L X, LI S M. Forgery face detection based on multi-scale Transformer fusing multi-domain information[J]. Computer Science, 2023, 50(10): 112-118. | |
| 77 | LI Z, CUI Y, LIU W, et al. Construction and calibration of a stereo vision acquisition platform for multimodal face antispoofing[J]. Advances in Computer, Signals and Systems, 2023, 7(3): 22-32. | 
| 78 | TIAN Y, HUANG Y, ZHANG K, et al. Polarized image translation from nonpolarized cameras for multimodal face anti-spoofing[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5651-5664. | 
| 79 | LI C, LI Z, SUN J, et al. Middle-shallow feature aggregation in multimodality for face anti-spoofing[J]. Scientific Reports, 2023, 13: No.9870. | 
| 80 | DENG P, GE C, WEI H, et al. Multimodal contrastive learning for face anti-spoofing[J]. Engineering Applications of Artificial Intelligence, 2024, 129: No.107600. | 
| 81 | RAGHAVENDRA R, LI G. Multimodality for reliable single image based face morphing attack detection[J]. IEEE Access, 2022, 10: 82418-82433. | 
| 82 | KONG C, ZHENG K, LIU Y, et al. M3FAS: an accurate and robust multimodal mobile face anti-spoofing system[J]. IEEE Transactions on Dependable and Secure Computing, 2024, 21(6): 5650-5666. | 
| 83 | BIAWAS A S, DEY S, AHIRWAR A K. 3sXcsNet: a framework for face presentation attack detection using deep learning[J]. Expert Systems with Applications, 2024, 243: No.122821. | 
| 84 | PHILLIPS P J, FLYNN P J, SCRUGGS T, et al. Overview of the face recognition grand challenge[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition — Volume 1. Piscataway: IEEE, 2005: 947-954. | 
| 85 | YIN L, WEI X, SUN Y, et al. A 3D facial expression database for facial behavior research[C]// Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2006: 211-216. | 
| 86 | FALTEMIER T C, BOWYER K W, FLYNN P J. Using a multi-instance enrollment representation to improve 3D face recognition[C]// Proceedings of the 1st IEEE International Conference on Biometrics: Theory, Applications, and Systems. Piscataway: IEEE, 2007: 1-6. | 
| 87 | SAVRAN A, ALYÜZ N, DIBEKLIOĞLU H, et al. Bosphorus database for 3D face analysis[C]// Proceedings of the 2008 European Workshop on Biometrics and Identity Management, LNCS 5372. Berlin: Springer, 2008: 47-56. | 
| 88 | GUPTA S, CASTLEMAN K R, MARKEY M K, et al. Texas 3D face recognition database[C]// Proceedings of the 2010 IEEE Southwest Symposium on Image Analysis and Interpretation. Piscataway: IEEE, 2010: 97-100. | 
| 89 | COLOMBO A, CUSANO C, SCHETTINI R. UMB-DB: a database of partially occluded 3D faces[C]// Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2011: 2113-2119. | 
| 90 | XU C, TAN T, LI S, et al. Learning effective intrinsic features to boost 3D-based face recognition[C]// Proceedings of the 2006 European Conference on Computer Vision, LNCS 3952. Berlin: Springer, 2006: 416-427. | 
| [1] | Yang ZHOU, Hui LI. Remote sensing image building extraction network based on dual promotion of semantic and detailed features [J]. Journal of Computer Applications, 2025, 45(4): 1310-1316. | 
| [2] | Shiyue GUO, Jianwu DANG, Yangping WANG, Jiu YONG. 3D hand pose estimation combining attention mechanism and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(4): 1293-1299. | 
| [3] | Yiding WANG, Zehao WANG, Yaoli LI, Shaoqing CAI, Yuan YUAN. Multi-scale 2D-Adaboost microscopic image recognition algorithm of Chinese medicinal materials powder [J]. Journal of Computer Applications, 2025, 45(4): 1325-1332. | 
| [4] | Linhao LI, Dong HAN, Yongfeng DONG, Yingshuang LI, Zhen WANG. Scene graph generation method based on association information enhancement and relationship balance [J]. Journal of Computer Applications, 2025, 45(3): 953-962. | 
| [5] | Qiurun HE, Jie HU, Bo PENG, Tianyuan LI. Fabric defect detection algorithm based on context information and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(2): 640-646. | 
| [6] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. | 
| [7] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. | 
| [8] | Rui LI, Guanfeng LI, Dezhou HU, Wenxin GAO. Knowledge graph multi-hop reasoning model fusing path and subgraph features [J]. Journal of Computer Applications, 2025, 45(1): 32-39. | 
| [9] | Pengcheng SONG, Lijun GUO, Rong ZHANG. Weakly supervised video anomaly detection with local-global temporal dependency [J]. Journal of Computer Applications, 2025, 45(1): 240-246. | 
| [10] | Shang LIU, Yuwei ZHOU, Rao DAI, Linfang DONG, Meng LIU. Small target detection algorithm in remote sensing images integrating attention and contextual information [J]. Journal of Computer Applications, 2025, 45(1): 292-300. | 
| [11] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. | 
| [12] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. | 
| [13] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. | 
| [14] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. | 
| [15] | Guijin HAN, Xinyuan ZHANG, Wentao ZHANG, Ya HUANG. Self-supervised image registration algorithm based on multi-feature fusion [J]. Journal of Computer Applications, 2024, 44(5): 1597-1604. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||