Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1325-1332.DOI: 10.11772/j.issn.1001-9081.2024040438
• Multimedia computing and computer simulation • Previous Articles Next Articles
Yiding WANG1, Zehao WANG1, Yaoli LI2, Shaoqing CAI2(), Yuan YUAN3
Received:
2024-04-16
Revised:
2024-06-18
Accepted:
2024-06-26
Online:
2025-04-08
Published:
2025-04-10
Contact:
Shaoqing CAI
About author:
WANG Yiding, born in 1967, Ph. D., professor. His research interests include biometrics recognition, machine vision.Supported by:
通讯作者:
蔡少青
作者简介:
王一丁(1967—),男,北京人,教授,博士,CCF会员,主要研究方向:生物特征识别、机器视觉基金资助:
CLC Number:
Yiding WANG, Zehao WANG, Yaoli LI, Shaoqing CAI, Yuan YUAN. Multi-scale 2D-Adaboost microscopic image recognition algorithm of Chinese medicinal materials powder[J]. Journal of Computer Applications, 2025, 45(4): 1325-1332.
王一丁, 王泽浩, 李耀利, 蔡少青, 袁媛. 多尺度2D-Adaboost的中药材粉末显微图像识别算法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1325-1332.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040438
特征融合方式 | 准确率/% | Loss |
---|---|---|
不融合(只使用局部特征) | 91.50 | 0.617 |
不融合(只使用全局特征) | 92.83 | 0.522 |
直接拼接 | 93.27 | 0.509 |
+CAM和SAM | 93.84 | 0.455 |
+MSMLP | 94.42 | 0.426 |
Tab. 1 Comparison experimental results of different feature fusion methods
特征融合方式 | 准确率/% | Loss |
---|---|---|
不融合(只使用局部特征) | 91.50 | 0.617 |
不融合(只使用全局特征) | 92.83 | 0.522 |
直接拼接 | 93.27 | 0.509 |
+CAM和SAM | 93.84 | 0.455 |
+MSMLP | 94.42 | 0.426 |
特征融合主干 | 背景抑制模块 | 特征细化模块 | 准确率% | Loss |
---|---|---|---|---|
√ | 94.42 | 0.426 | ||
√ | √ | 95.66 | 0.341 | |
√ | √ | 95.29 | 0.360 | |
√ | √ | √ | 96.85 | 0.258 |
Tab. 2 Ablation experimental results
特征融合主干 | 背景抑制模块 | 特征细化模块 | 准确率% | Loss |
---|---|---|---|---|
√ | 94.42 | 0.426 | ||
√ | √ | 95.66 | 0.341 | |
√ | √ | 95.29 | 0.360 | |
√ | √ | √ | 96.85 | 0.258 |
模型 | 准确率% | Loss |
---|---|---|
ConvNeXt-L | 89.29 | 0.748 |
ViT-L | 91.59 | 0.616 |
Swin-L | 93.06 | 0.514 |
Conformer-L | 94.25 | 0.443 |
本文模型 | 96.85 | 0.258 |
Tab. 3 Comparison experimental results of different classification networks
模型 | 准确率% | Loss |
---|---|---|
ConvNeXt-L | 89.29 | 0.748 |
ViT-L | 91.59 | 0.616 |
Swin-L | 93.06 | 0.514 |
Conformer-L | 94.25 | 0.443 |
本文模型 | 96.85 | 0.258 |
1 | 杨军. 中药材鉴定中应用显微鉴定技术的研究进展[J]. 光明中医, 2021, 36(16):2828-2830. |
YANG J. Research progress on application of microscopic identification technology in the identification of Chinese medicinal materials[J]. Guangming Journal of Chinese Medicine, 2021, 36(16):2828-2830. | |
2 | 王耐,卢文彪,凌秀华,等. 牛膝和川牛膝药材的特征提取与图像识别[J]. 中国药房, 2017, 28(12):1670-1673. |
WANG N, LU W B, LING X H, et al. Feature extraction and image recognition of Achyrantha bidentata and Cyathula officinalis[J]. China Pharmacy, 2017, 28(12):1670-1673. | |
3 | 王凤梅,卢文彪,陈仕妍. 基于灰度匹配模板的中药材显微图像识别[J]. 中国实验方剂学杂志, 2019, 25(11):167-172. |
WANG F M, LU W B, CHEN S Y. Microscopic image recognition of traditional Chinese medicinal materials based on grayscale matching templates[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(11): 167-172. | |
4 | 王一丁,姚毅,李耀利,等. 基于改进动态ReLU和注意力机制模型的中药材粉末显微图像识别研究[J]. 计算机应用研究, 2021, 38(9):2861-2865, 2870. |
WANG Y D, YAO Y, LI Y L, et al. Research on microscopic image recognition of Chinese medicinal materials powder based on improved dynamic ReLU and attention mechanism model[J]. Application Research of Computers, 2021, 38(9) : 2861-2865, 2870. | |
5 | 王一丁,石铎,李耀利,等. 基于SqueezeNet深度网络的中药材粉末显微特征图像识别研究[J]. 电子显微学报, 2019, 38(2):130-138. |
WANG Y D, SHI D, LI Y L, et al. Studies on identification of microscopic images of Chinese medicinal materials powder based on SqueezeNet deep network[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(2):130-138. | |
6 | 王一丁,姚毅,李耀利,等. 改进EfficientNet的表皮细胞图像识别研究[J]. 计算机工程与应用, 2022, 58(11):200-208. |
WANG Y D, YAO Y, LI Y L, et al. Epidermal cell image recognition research of improved EfficientNet[J]. Computer Engineering and Applications, 2012, 58(11):200-208. | |
7 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
8 | VASWANI A, SHAZEER N, PARMER N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
9 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. [2024-04-15]. . |
10 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. |
11 | FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[C]// Proceedings of the 1995 European Conference on Computational Learning Theory, LNCS 904. Berlin: Springer, 1995: 23-37. |
12 | WOO S, DEBNATH S, HU R, et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoencoders[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 16133-16142. |
13 | LOU M, ZHOU H Y, YANG S, et al. TransXNet: learning both global and local dynamics with a dual dynamic token mixer for visual recognition[EB/OL]. [2024-04-15].. |
14 | BASTIDAS A A, TANG H. Channel attention networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 881-888. |
15 | WANG H, FAN Y, WANG Z, et al. Parameter-free spatial attention network for person re-identification[EB/OL]. [2024-04-15].. |
16 | CHOU P Y, KAO Y Y, LIN C H. Fine-grained visual classification with high-temperature refinement and background suppression[EB/OL]. [2024-04-15].. |
17 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2024-04-15].. |
18 | LIU Z, MAO H, WU C Y, et al. A ConvNet for the 2020s[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11966-11976. |
19 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. |
20 | PENG Z, HUANG W, GU S, et al. Conformer: local features coupling global representations for visual recognition[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 357-366. |
[1] | Yang ZHOU, Hui LI. Remote sensing image building extraction network based on dual promotion of semantic and detailed features [J]. Journal of Computer Applications, 2025, 45(4): 1310-1316. |
[2] | Shiyue GUO, Jianwu DANG, Yangping WANG, Jiu YONG. 3D hand pose estimation combining attention mechanism and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(4): 1293-1299. |
[3] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[4] | Ruilong CHEN, Tao HU, Youjun BU, Peng YI, Xianjun HU, Wei QIAO. Stacking ensemble adversarial defense method for encrypted malicious traffic detection model [J]. Journal of Computer Applications, 2025, 45(3): 864-871. |
[5] | Zhenhua XUE, Qiang LI, Chao HUANG. Vision foundation model-driven pixel-level image anomaly detection method [J]. Journal of Computer Applications, 2025, 45(3): 823-831. |
[6] | Zirong HONG, Guangqing BAO. Review of radar automatic target recognition based on ensemble learning [J]. Journal of Computer Applications, 2025, 45(2): 371-382. |
[7] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. |
[8] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
[9] | Miaolei DENG, Yupei KAN, Chuanchuan SUN, Haihang XU, Shaojun FAN, Xin ZHOU. Summary of network intrusion detection systems based on deep learning [J]. Journal of Computer Applications, 2025, 45(2): 453-466. |
[10] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. |
[11] | Danni DING, Bo PENG, Xi WU. VPNet: fatty liver ultrasound image classification method inspired by ventral pathway [J]. Journal of Computer Applications, 2025, 45(2): 662-669. |
[12] | Qiurun HE, Jie HU, Bo PENG, Tianyuan LI. Fabric defect detection algorithm based on context information and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(2): 640-646. |
[13] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
[14] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
[15] | Yan YAN, Xingying QIAN, Pengbin YAN, Jie YANG. Federated learning-based statistical prediction and differential privacy protection method for location big data [J]. Journal of Computer Applications, 2025, 45(1): 127-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||