Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1403-1409.DOI: 10.11772/j.issn.1001-9081.2024050684
• China Conference on Data Mining 2024 (CCDM 2024) • Previous Articles
Jun YANG1, Mengxue PANG1, Lishan QIAO1,2()
Received:
2024-05-27
Revised:
2024-06-22
Accepted:
2024-06-28
Online:
2024-07-25
Published:
2025-05-10
Contact:
Lishan QIAO
About author:
YANG Jun, born in 2000, M. S. candidate. Her research interests include intelligent medicine, brain functional data analysis, machine learning.Supported by:
通讯作者:
乔立山
作者简介:
杨俊(2000—),女,山东新泰人,硕士研究生,主要研究方向:智能医学、脑功能数据分析、机器学习基金资助:
CLC Number:
Jun YANG, Mengxue PANG, Lishan QIAO. Estimation and classification of brain functional networks based on temporal correlation information fusion[J]. Journal of Computer Applications, 2025, 45(5): 1403-1409.
杨俊, 庞梦雪, 乔立山. 融合时序相关信息的脑功能网络估计与分类[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1403-1409.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050684
类别 | 性别(男/女) | 年龄 | MMSE |
---|---|---|---|
MCI( N=68) | 39/29 | 76.50±13.50 | 26.77±1.23 |
NC( N=69) | 17/52 | 71.50±14.50 | 28.85±1.15 |
Tab. 1 Demographic and clinical information of subjects in ADNI dataset
类别 | 性别(男/女) | 年龄 | MMSE |
---|---|---|---|
MCI( N=68) | 39/29 | 76.50±13.50 | 26.77±1.23 |
NC( N=69) | 17/52 | 71.50±14.50 | 28.85±1.15 |
性能评价指标 | 定义 |
---|---|
准确度 | |
灵敏度 | |
特异性 | |
平衡率 | |
阳性查准率 | |
阴性查准率 | |
F1分数 |
Tab. 2 Definition of performance evaluation indicators
性能评价指标 | 定义 |
---|---|
准确度 | |
灵敏度 | |
特异性 | |
平衡率 | |
阳性查准率 | |
阴性查准率 | |
F1分数 |
方法 | 准确度 | 灵敏度 | 特异性 | 平衡率 | 阳性查准率 | 阴性查准率 | F1分数 | AUC |
---|---|---|---|---|---|---|---|---|
PC | 0.671 5 | 0.720 6 | 0.623 2 | 0.671 9 | 0.653 3 | 0.693 5 | 0.685 3 | 0.730 2 |
SR | 0.715 3 | 0.720 6 | 0.710 1 | 0.715 4 | 0.710 1 | 0.720 6 | 0.715 3 | 0.783 9 |
SR+SS | 0.737 2 | 0.764 7 | 0.710 1 | 0.737 4 | 0.722 2 | 0.753 8 | 0.742 9 | 0.773 2 |
SR+W | 0.744 5 | 0.750 0 | 0.739 1 | 0.744 6 | 0.739 1 | 0.750 0 | 0.739 1 | 0.796 9 |
SRiLT | 0.839 4 | 0.852 9 | 0.826 1 | 0.839 5 | 0.828 6 | 0.850 7 | 0.840 6 | 0.929 0 |
I-SRiLT | 0.854 0 | 0.838 2 | 0.869 6 | 0.853 9 | 0.863 6 | 0.845 1 | 0.850 7 | 0.927 3 |
Tab. 1 Classification performance comparison of different methods on ADNI dataset
方法 | 准确度 | 灵敏度 | 特异性 | 平衡率 | 阳性查准率 | 阴性查准率 | F1分数 | AUC |
---|---|---|---|---|---|---|---|---|
PC | 0.671 5 | 0.720 6 | 0.623 2 | 0.671 9 | 0.653 3 | 0.693 5 | 0.685 3 | 0.730 2 |
SR | 0.715 3 | 0.720 6 | 0.710 1 | 0.715 4 | 0.710 1 | 0.720 6 | 0.715 3 | 0.783 9 |
SR+SS | 0.737 2 | 0.764 7 | 0.710 1 | 0.737 4 | 0.722 2 | 0.753 8 | 0.742 9 | 0.773 2 |
SR+W | 0.744 5 | 0.750 0 | 0.739 1 | 0.744 6 | 0.739 1 | 0.750 0 | 0.739 1 | 0.796 9 |
SRiLT | 0.839 4 | 0.852 9 | 0.826 1 | 0.839 5 | 0.828 6 | 0.850 7 | 0.840 6 | 0.929 0 |
I-SRiLT | 0.854 0 | 0.838 2 | 0.869 6 | 0.853 9 | 0.863 6 | 0.845 1 | 0.850 7 | 0.927 3 |
数据信息 | 患者(男/女) | 正常(男/女) | 年龄 | TR/ms | TE/ms | Thickness/mm | TP | Flip Angle | Slice Number |
---|---|---|---|---|---|---|---|---|---|
ABIDE (NYU) | 79(68/11) | 105(79/26) | 14.52±6.97 | 2 000 | 15 | 4.0 | 180 | 90° | 33 |
REST-MDD (Site20) | 282(99/183) | 251(87/164) | 38.74±13.74 | 2 000 | 30 | 3.0 | 242 | 90° | 32 |
Tab. 4 Demographic information and fMRI parameters of ABIDE and REST-MDD datasets
数据信息 | 患者(男/女) | 正常(男/女) | 年龄 | TR/ms | TE/ms | Thickness/mm | TP | Flip Angle | Slice Number |
---|---|---|---|---|---|---|---|---|---|
ABIDE (NYU) | 79(68/11) | 105(79/26) | 14.52±6.97 | 2 000 | 15 | 4.0 | 180 | 90° | 33 |
REST-MDD (Site20) | 282(99/183) | 251(87/164) | 38.74±13.74 | 2 000 | 30 | 3.0 | 242 | 90° | 32 |
方法 | 准确度 | 灵敏度 | 特异性 | 平衡率 | 阳性查准率 | 阴性查准率 | F1分数 | AUC |
---|---|---|---|---|---|---|---|---|
PC | 0.608 8 | 0.582 5 | 0.629 4 | 0.606 0 | 0.570 7 | 0.655 4 | 0.548 3 | 0.685 2 |
SR | 0.619 9 | 0.436 6 | 0.782 4 | 0.609 5 | 0.589 6 | 0.670 1 | 0.463 2 | 0.630 9 |
SR+SS | 0.668 5 | 0.658 2 | 0.676 2 | 0.667 2 | 0.604 7 | 0.724 5 | 0.630 6 | 0.721 9 |
SR+W | 0.679 8 | 0.636 9 | 0.717 4 | 0.677 1 | 0.636 4 | 0.717 6 | 0.626 6 | 0.737 9 |
SRiLT | 0.684 8 | 0.620 3 | 0.733 3 | 0.676 8 | 0.636 4 | 0.719 6 | 0.628 2 | 0.731 2 |
I-SRiLT | 0.706 4 | 0.614 5 | 0.759 7 | 0.687 1 | 0.661 4 | 0.720 5 | 0.626 1 | 0.756 2 |
Tab. 5 Classification performance of different methods on ABIDE dataset
方法 | 准确度 | 灵敏度 | 特异性 | 平衡率 | 阳性查准率 | 阴性查准率 | F1分数 | AUC |
---|---|---|---|---|---|---|---|---|
PC | 0.608 8 | 0.582 5 | 0.629 4 | 0.606 0 | 0.570 7 | 0.655 4 | 0.548 3 | 0.685 2 |
SR | 0.619 9 | 0.436 6 | 0.782 4 | 0.609 5 | 0.589 6 | 0.670 1 | 0.463 2 | 0.630 9 |
SR+SS | 0.668 5 | 0.658 2 | 0.676 2 | 0.667 2 | 0.604 7 | 0.724 5 | 0.630 6 | 0.721 9 |
SR+W | 0.679 8 | 0.636 9 | 0.717 4 | 0.677 1 | 0.636 4 | 0.717 6 | 0.626 6 | 0.737 9 |
SRiLT | 0.684 8 | 0.620 3 | 0.733 3 | 0.676 8 | 0.636 4 | 0.719 6 | 0.628 2 | 0.731 2 |
I-SRiLT | 0.706 4 | 0.614 5 | 0.759 7 | 0.687 1 | 0.661 4 | 0.720 5 | 0.626 1 | 0.756 2 |
方法 | 准确度 | 灵敏度 | 特异性 | 平衡率 | 阳性查准率 | 阴性查准率 | F1分数 | AUC |
---|---|---|---|---|---|---|---|---|
PC | 0.568 5 | 0.588 9 | 0.541 1 | 0.565 0 | 0.592 3 | 0.538 0 | 0.588 3 | 0.608 7 |
SR | 0.542 3 | 0.607 7 | 0.465 5 | 0.536 6 | 0.558 1 | 0.518 8 | 0.579 6 | 0.554 4 |
SR+SS | 0.551 6 | 0.602 4 | 0.485 7 | 0.544 1 | 0.569 3 | 0.523 8 | 0.583 1 | 0.562 0 |
SR+W | 0.570 3 | 0.600 3 | 0.539 6 | 0.569 9 | 0.590 7 | 0.554 7 | 0.590 6 | 0.581 2 |
SRiLT | 0.546 3 | 0.613 1 | 0.477 6 | 0.545 4 | 0.568 2 | 0.525 7 | 0.584 8 | 0.559 9 |
I-SRiLT | 0.605 6 | 0.615 4 | 0.569 3 | 0.592 3 | 0.620 2 | 0.566 2 | 0.613 6 | 0.626 5 |
Tab. 6 Classification performance of different methods on REST-MDD dataset
方法 | 准确度 | 灵敏度 | 特异性 | 平衡率 | 阳性查准率 | 阴性查准率 | F1分数 | AUC |
---|---|---|---|---|---|---|---|---|
PC | 0.568 5 | 0.588 9 | 0.541 1 | 0.565 0 | 0.592 3 | 0.538 0 | 0.588 3 | 0.608 7 |
SR | 0.542 3 | 0.607 7 | 0.465 5 | 0.536 6 | 0.558 1 | 0.518 8 | 0.579 6 | 0.554 4 |
SR+SS | 0.551 6 | 0.602 4 | 0.485 7 | 0.544 1 | 0.569 3 | 0.523 8 | 0.583 1 | 0.562 0 |
SR+W | 0.570 3 | 0.600 3 | 0.539 6 | 0.569 9 | 0.590 7 | 0.554 7 | 0.590 6 | 0.581 2 |
SRiLT | 0.546 3 | 0.613 1 | 0.477 6 | 0.545 4 | 0.568 2 | 0.525 7 | 0.584 8 | 0.559 9 |
I-SRiLT | 0.605 6 | 0.615 4 | 0.569 3 | 0.592 3 | 0.620 2 | 0.566 2 | 0.613 6 | 0.626 5 |
1 | McCARTY P J, PINES A R, SUSSMAN B L, et al. Resting state functional magnetic resonance imaging elucidates neurotransmitter deficiency in autism spectrum disorder[J]. Journal of Personalized Medicine, 2021, 11( 10): No. 969. |
2 | ZHU X, YUAN F, ZHOU G, et al. Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity[J]. Brain Imaging and Behavior, 2021, 15( 3): 1279- 1289. |
3 | 余仁萍, 余海飞, 万红. 基于静息态功能磁共振成像的精神分裂症脑网络特征分类研究[J]. 生物医学工程学杂志, 2020, 37( 4): 661- 669. |
YU R P, YU H F, WAN H. Research on brain network for schizophrenia classification based on resting-state functional magnetic resonance imaging[J]. Journal of Biomedical Engineering, 2020, 37( 4): 661- 669. | |
4 | LI G, LIU Y, ZHENG Y, et al. Large-scale dynamic causal modeling of major depressive disorder based on resting-state functional magnetic resonance imaging[J]. Human Brain Mapping, 2020, 41( 4): 865- 881. |
5 | JENKINSON M, CHAPPELL M. Introduction to neuroimaging analysis[M]. Oxford: Oxford University Press, 2018. |
6 | QIU Y-H, HUANG Z-H, GAO Y-Y, et al. Alterations in intrinsic functional networks in Parkinson's disease patients with depression: a resting-state functional magnetic resonance imaging study[J]. CNS Neuroscience and Therapeutics, 2021, 27( 3): 289- 298. |
7 | ZHAO F, ZHANG H, REKIK I, et al. Diagnosis of autism spectrum disorders using multi-level high-order functional networks derived from resting-state functional MRI[J]. Frontiers in Human Neuroscience, 2018, 12: No. 184. |
8 | RONICKO J F A, THOMAS J, THANGAVEL P, et al. Diagnostic classification of autism using resting-state fMRI data improves with full correlation functional brain connectivity compared to partial correlation[J]. Journal of Neuroscience Methods, 2020, 345: No. 108884. |
9 | MAHADEVAN A S, TOOLEY U A, BERTOLERO M A, et al. Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data[J]. NeuroImage, 2021, 241: No. 118408. |
10 | LI W, ZHANG L, QIAO L, et al. Toward a better estimation of functional brain network for mild cognitive impairment identification: a transfer learning view[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24( 4): 1160- 1168. |
11 | QIAO L, ZHANG L, CHEN S, et al. Data-driven graph construction and graph learning: a review[J]. Neurocomputing, 2018, 312: 336- 351. |
12 | BIJSTERBOSCH J, SMITH S, BECKMANN C F. Introduction to resting state fMRI functional connectivity[M]. Oxford: Oxford University Press, 2017. |
13 | LI W, WANG Z, ZHANG L, et al. Remodeling Pearson's correlation for functional brain network estimation and autism spectrum disorder identification[J]. Frontiers in Neuroinformatics, 2017, 11: No. 55. |
14 | QIAO L, ZHANG H, KIM M, et al. Estimating functional brain networks by incorporating a modularity prior[J]. NeuroImage, 2016, 141: 399- 407. |
15 | WANG J, ZHANG L, WANG Q, et al. Multi-class ASD classification based on functional connectivity and functional correlation tensor via multi-source domain adaptation and multi-view sparse representation[J]. IEEE Transactions on Medical Imaging, 2020, 39( 10): 3137- 3147. |
16 | XUE Y, ZHANG Y, ZHANG L, et al. Learning brain functional networks with latent temporal dependency for MCI identification[J]. IEEE Transactions on Biomedical Engineering, 2022, 69( 2): 590- 601. |
17 | LI W, QIAO L, ZHANG L, et al. Functional brain network estimation with time series self-scrubbing[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23( 6): 2494- 2504. |
18 | SU H, ZHANG L, QIAO L, et al. Estimating high-order brain functional networks by correlation-preserving embedding[J]. Medical and Biological Engineering and Computing, 2022, 60( 10): 2813- 2823. |
19 | COMBETTES P L, PESQUET J C. Proximal splitting methods in signal processing[M]// Fixed-point algorithms for inverse problems in science and engineering, SOIA 49. New York: Springer, 2011: 185- 212. |
20 | TZOURIO-MAZOYER N, LAMDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage, 2002, 15( 1): 273- 289. |
21 | CHEN H, ZHANG Y, ZHANG L, et al. Estimating brain functional networks based on adaptively-weighted fMRI signals for MCI identification[J]. Frontiers in Aging Neuroscience, 2020, 12: No. 595322. |
22 | SCHULTZ S A, BOOTS E A, DARST B F, et al. Cardiorespiratory fitness alters the influence of a polygenic risk score on biomarkers of AD[J]. Neurology, 2017, 88( 17): 1650- 1658. |
23 | PAN P, ZHU L, YU T, et al. Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: a meta-analysis of resting-state fMRI studies[J]. Ageing Research Reviews, 2017, 35: 12- 21. |
24 | GAO Y, NIE K, HUANG B, et al. Changes of brain structure in Parkinson's disease patients with mild cognitive impairment analyzed via VBM technology[J]. Neuroscience Letters, 2017, 658: 121- 132. |
25 | BAILLY M, DESTRIEUX C, HOMMET C, et al. Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer's disease and mild cognitive impairment: MRI and 18F‑FDG PET quantitative analysis using FreeSurfer[J]. BioMed Research International, 2015, 2015: No. 583931. |
[1] | Jingxin LIU, Wenjing HUANG, Liangsheng XU, Chong HUANG, Jiansheng WU. Unsupervised feature selection model with dictionary learning and sample correlation preservation [J]. Journal of Computer Applications, 2024, 44(12): 3766-3775. |
[2] | Junhong ZHU, Junyu LAI, Lianqiang GAN, Zhiyong CHEN, Huashuo LIU, Guoyao XU. Video prediction model combining involution and convolution operators [J]. Journal of Computer Applications, 2024, 44(1): 113-122. |
[3] | Tian HE, Zongxin SHEN, Qianqian HUANG, Yanyong HUANG. Adaptive learning-based multi-view unsupervised feature selection method [J]. Journal of Computer Applications, 2023, 43(9): 2657-2664. |
[4] | Jianwen GAN, Yan CHEN, Peng ZHOU, Liang DU. Clustering ensemble algorithm with high-order consistency learning [J]. Journal of Computer Applications, 2023, 43(9): 2665-2672. |
[5] | Ranyan NI, Yi ZHANG. Action recognition method based on video spatio-temporal features [J]. Journal of Computer Applications, 2023, 43(2): 521-528. |
[6] | Zhifeng MA, Junyang YU, Longge WANG. Diversity represented deep subspace clustering algorithm [J]. Journal of Computer Applications, 2023, 43(2): 407-412. |
[7] | Yu YANG, Weiwei DUAN. Spectral clustering based dynamic community discovery algorithm in social network [J]. Journal of Computer Applications, 2023, 43(10): 3129-3135. |
[8] | ZHANG Cheng, WAN Yuan, QIANG Haopeng. Deep unsupervised discrete cross-modal hashing based on knowledge distillation [J]. Journal of Computer Applications, 2021, 41(9): 2523-2531. |
[9] | LIU Ziyan, ZHU Mingcheng, YUAN Lei, MA Shanshan, CHEN Lingzhouting. Video person re-identification based on non-local attention and multi-feature fusion [J]. Journal of Computer Applications, 2021, 41(2): 530-536. |
[10] | KONG Lingxu, WU Haifeng, ZENG Yu, LU Xiaoling. Diagnosis of mild cognitive impairment using deep learning and brain functional connectivities with different frequency dimensions [J]. Journal of Computer Applications, 2021, 41(2): 590-597. |
[11] | LI Hanlu, XIE Qing, TANG Lingli, LIU Yongjian. POI recommendation algorithm combining spatiotemporal information and POI importance [J]. Journal of Computer Applications, 2020, 40(9): 2600-2605. |
[12] | LYU Yali, MIAO Junzhong, HU Weixin. Semi-supervised learning algorithm of graph based on label metric learning [J]. Journal of Computer Applications, 2020, 40(12): 3430-3436. |
[13] | SONG Yan, YIN Jun. Multi-view spectral clustering algorithm based on shared nearest neighbor [J]. Journal of Computer Applications, 2020, 40(11): 3211-3216. |
[14] | YANG Yanlin, YE Zhonglin, ZHAO Haixing, MENG Lei. Link prediction algorithm based on high-order proximity approximation [J]. Journal of Computer Applications, 2019, 39(8): 2366-2373. |
[15] | DING Chao, ZHAO Hai, SI Shuaizong, ZHU Jian. Evolution model of normal aging human brain functional network [J]. Journal of Computer Applications, 2019, 39(4): 963-971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||