Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2926-2933.DOI: 10.11772/j.issn.1001-9081.2024081152
• Advanced computing • Previous Articles
Huaizhe ZHAO, Zheng YANG, Li ZOU, Yi LIU()
Received:
2024-08-16
Revised:
2024-10-15
Accepted:
2024-10-22
Online:
2024-11-07
Published:
2025-09-10
Contact:
Yi LIU
About author:
ZHAO Huaizhe, born in 2000, M. S. candidate. His research interests include formal concept analysis.Supported by:
通讯作者:
刘毅
作者简介:
赵怀喆(2000—),男,山东聊城人,硕士研究生,CCF会员,主要研究方向:形式概念分析基金资助:
CLC Number:
Huaizhe ZHAO, Zheng YANG, Li ZOU, Yi LIU. Association rule extraction method based on triadic fuzzy linguistic formal context[J]. Journal of Computer Applications, 2025, 45(9): 2926-2933.
赵怀喆, 杨政, 邹丽, 刘毅. 基于三元模糊语言形式背景的关联规则提取方法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2926-2933.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081152
G | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.7 | 0.2 | 0.2 | 0.6 | 0.0 | 0.1 | 0.9 | 0.1 | 0.2 | 0.7 | 0.3 | 0.7 | 0.0 | 0.2 | 0.4 | 0.4 | |
0.7 | 0.2 | 0.1 | 0.0 | 0.2 | 0.8 | 0.1 | 0.3 | 0.6 | 0.2 | 0.2 | 0.6 | 0.2 | 0.3 | 0.5 | 0.0 | 0.1 | 0.9 | |
0.1 | 0.4 | 0.5 | 0.4 | 0.5 | 0.1 | 0.1 | 0.4 | 0.5 | 0.0 | 0.8 | 0.2 | 0.0 | 0.6 | 0.4 | 0.2 | 0.5 | 0.3 |
Tab. 1 Triadic fuzzy linguistic formal context G,LSa,T,I?
G | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.7 | 0.2 | 0.2 | 0.6 | 0.0 | 0.1 | 0.9 | 0.1 | 0.2 | 0.7 | 0.3 | 0.7 | 0.0 | 0.2 | 0.4 | 0.4 | |
0.7 | 0.2 | 0.1 | 0.0 | 0.2 | 0.8 | 0.1 | 0.3 | 0.6 | 0.2 | 0.2 | 0.6 | 0.2 | 0.3 | 0.5 | 0.0 | 0.1 | 0.9 | |
0.1 | 0.4 | 0.5 | 0.4 | 0.5 | 0.1 | 0.1 | 0.4 | 0.5 | 0.0 | 0.8 | 0.2 | 0.0 | 0.6 | 0.4 | 0.2 | 0.5 | 0.3 |
序号 | 概念知识 |
---|---|
1# | |
2# | |
3# | |
4# | |
5# | |
6# | |
7# | |
8# | |
9# | |
10# |
Tab. 2 Triadic fuzzy linguistic concept knowledge
序号 | 概念知识 |
---|---|
1# | |
2# | |
3# | |
4# | |
5# | |
6# | |
7# | |
8# | |
9# | |
10# |
约束条件 | 频繁项集 | 支持度 | 约束条件 | 频繁项集 | 支持度 |
---|---|---|---|---|---|
0.33 | 0.67 | ||||
0.67 | 0.67 | ||||
0.33 | 0.67 | ||||
0.33 | 0.33 | ||||
0.67 | 0.67 | ||||
0.33 | 0.33 |
Tab. 3 Frequent item set
约束条件 | 频繁项集 | 支持度 | 约束条件 | 频繁项集 | 支持度 |
---|---|---|---|---|---|
0.33 | 0.67 | ||||
0.67 | 0.67 | ||||
0.33 | 0.67 | ||||
0.33 | 0.33 | ||||
0.67 | 0.67 | ||||
0.33 | 0.33 |
数据集 | 特征名称 | 特征描述 | 特征类型 |
---|---|---|---|
数据集1 | Company | 公司名称 | 离散型 |
Education | 应聘者学历要求 | 离散型 | |
District | 工作地点GDP水平 | 连续型 | |
Salary | 薪资待遇 | 连续型 | |
WorkYear | 应聘者经验要求 | 连续型 | |
数据集2 | MSSubClass | 建筑类别 | 离散型 |
MSZoning | 总区域规划分类 | 离散型 | |
LotArea | 土地面积 | 连续型 | |
OverallQual | 材料和装修质量 | 连续型 | |
YearBuilt | 建造日期 | 连续型 | |
StorageArea | 储藏室面积 | 连续型 | |
SalePrice | 房产售价 | 连续型 | |
数据集3 | Name | 二手车型 | 离散型 |
Location | 销售地点 | 离散型 | |
Year | 车型年份 | 连续型 | |
Kilometers | 已行驶公里数 | 连续型 | |
Owner_Type | 新旧情况 | 连续型 | |
Engine | 发动机排量 | 连续型 | |
Price | 价格 | 连续型 |
Tab. 5 Dataset characteristics
数据集 | 特征名称 | 特征描述 | 特征类型 |
---|---|---|---|
数据集1 | Company | 公司名称 | 离散型 |
Education | 应聘者学历要求 | 离散型 | |
District | 工作地点GDP水平 | 连续型 | |
Salary | 薪资待遇 | 连续型 | |
WorkYear | 应聘者经验要求 | 连续型 | |
数据集2 | MSSubClass | 建筑类别 | 离散型 |
MSZoning | 总区域规划分类 | 离散型 | |
LotArea | 土地面积 | 连续型 | |
OverallQual | 材料和装修质量 | 连续型 | |
YearBuilt | 建造日期 | 连续型 | |
StorageArea | 储藏室面积 | 连续型 | |
SalePrice | 房产售价 | 连续型 | |
数据集3 | Name | 二手车型 | 离散型 |
Location | 销售地点 | 离散型 | |
Year | 车型年份 | 连续型 | |
Kilometers | 已行驶公里数 | 连续型 | |
Owner_Type | 新旧情况 | 连续型 | |
Engine | 发动机排量 | 连续型 | |
Price | 价格 | 连续型 |
条件 | 对象 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
0.0 | 0.4 | 0.6 | 0.4 | 0.6 | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.0 | 0.4 | 0.6 | 0.0 | 0.6 | 0.4 | 1.0 | 0.0 | 0.0 | ||
0.9 | 0.1 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 1.0 | 0.0 | ||
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
0.0 | 0.5 | 0.5 | 0.0 | 0.6 | 0.4 | 0.0 | 1.0 | 0.0 | ||
0.4 | 0.6 | 0.0 | 0.0 | 0.6 | 0.4 | 1.0 | 0.0 | 0.0 | ||
0.0 | 0.5 | 0.5 | 0.0 | 0.4 | 0.6 | 0.0 | 1.0 | 0.0 | ||
0.0 | 0.4 | 0.6 | 0.6 | 0.4 | 0.0 | 0.0 | 1.0 | 0.0 | ||
0.9 | 0.1 | 0.0 | 0.5 | 0.5 | 0.0 | 0.5 | 0.5 | 0.0 | ||
0.0 | 0.6 | 0.4 | 0.0 | 0.9 | 0.1 | 0.0 | 0.0 | 1.0 | ||
0.0 | 0.5 | 0.5 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.4 | 0.6 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | ||
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
0.0 | 0.4 | 0.6 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 1.0 | ||
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
0.0 | 0.6 | 0.4 | 0.0 | 0.3 | 0.7 | 0.0 | 0.0 | 1.0 |
Tab. 6 Triadic fuzzy linguistic formal sub-context under condition T0, T1 and T2 (Dataset 1)
条件 | 对象 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
0.0 | 0.4 | 0.6 | 0.4 | 0.6 | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.0 | 0.4 | 0.6 | 0.0 | 0.6 | 0.4 | 1.0 | 0.0 | 0.0 | ||
0.9 | 0.1 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 1.0 | 0.0 | ||
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
0.0 | 0.5 | 0.5 | 0.0 | 0.6 | 0.4 | 0.0 | 1.0 | 0.0 | ||
0.4 | 0.6 | 0.0 | 0.0 | 0.6 | 0.4 | 1.0 | 0.0 | 0.0 | ||
0.0 | 0.5 | 0.5 | 0.0 | 0.4 | 0.6 | 0.0 | 1.0 | 0.0 | ||
0.0 | 0.4 | 0.6 | 0.6 | 0.4 | 0.0 | 0.0 | 1.0 | 0.0 | ||
0.9 | 0.1 | 0.0 | 0.5 | 0.5 | 0.0 | 0.5 | 0.5 | 0.0 | ||
0.0 | 0.6 | 0.4 | 0.0 | 0.9 | 0.1 | 0.0 | 0.0 | 1.0 | ||
0.0 | 0.5 | 0.5 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.4 | 0.6 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | ||
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
0.0 | 0.4 | 0.6 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 1.0 | ||
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
0.0 | 0.6 | 0.4 | 0.0 | 0.3 | 0.7 | 0.0 | 0.0 | 1.0 |
条件 | 对象 | … | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.8 | 0.2 | 0.0 | … | 0.0 | 0.1 | 0.9 | 0.0 | ||
0.0 | 0.2 | 0.8 | 0.2 | … | 0.0 | 0.3 | 0.7 | 0.0 | ||
0.0 | 0.6 | 0.4 | 0.2 | … | 0.0 | 0.8 | 0.2 | 0.0 | ||
0.0 | 0.1 | 0.9 | 0.2 | … | 0.0 | 0.4 | 0.6 | 0.0 | ||
0.0 | 0.0 | 1.0 | 0.2 | … | 0.1 | 0.0 | 0.7 | 0.3 | ||
0.0 | 0.4 | 0.6 | 0.2 | … | 0.0 | 0.5 | 0.5 | 0.0 | ||
0.3 | 0.7 | 0.0 | 0.2 | … | 0.0 | 0.7 | 0.3 | 0.0 | ||
0.5 | 0.5 | 0.0 | 0.6 | … | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.5 | 0.5 | 0.0 | 0.2 | … | 0.0 | 0.9 | 0.1 | 0.0 | ||
0.3 | 0.7 | 0.0 | 0.0 | … | 0.0 | 0.5 | 0.5 | 0.0 | ||
0.0 | 1.0 | 0.0 | 0.2 | … | 0.7 | 0.0 | 0.6 | 0.4 | ||
0.0 | 0.8 | 0.2 | 0.2 | … | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.0 | 0.9 | 0.1 | 0.6 | … | 0.0 | 0.9 | 0.1 | 0.0 | ||
0.6 | 0.4 | 0.0 | 1.0 | … | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.0 | 0.9 | 0.1 | 0.0 | … | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.5 | 0.5 | 0.0 | 0.2 | … | 0.3 | 0.0 | 0.3 | 0.7 | ||
0.1 | 0.9 | 0.0 | 0.2 | … | 0.0 | 0.3 | 0.7 | 0.0 | ||
0.0 | 0.0 | 0.0 | 0.0 | … | 0.0 | 0.0 | 0.0 | 0.0 |
Tab. 7 Triadic fuzzy linguistic formal sub-context under condition T0, T1 and T2 (Dataset 2)
条件 | 对象 | … | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.8 | 0.2 | 0.0 | … | 0.0 | 0.1 | 0.9 | 0.0 | ||
0.0 | 0.2 | 0.8 | 0.2 | … | 0.0 | 0.3 | 0.7 | 0.0 | ||
0.0 | 0.6 | 0.4 | 0.2 | … | 0.0 | 0.8 | 0.2 | 0.0 | ||
0.0 | 0.1 | 0.9 | 0.2 | … | 0.0 | 0.4 | 0.6 | 0.0 | ||
0.0 | 0.0 | 1.0 | 0.2 | … | 0.1 | 0.0 | 0.7 | 0.3 | ||
0.0 | 0.4 | 0.6 | 0.2 | … | 0.0 | 0.5 | 0.5 | 0.0 | ||
0.3 | 0.7 | 0.0 | 0.2 | … | 0.0 | 0.7 | 0.3 | 0.0 | ||
0.5 | 0.5 | 0.0 | 0.6 | … | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.5 | 0.5 | 0.0 | 0.2 | … | 0.0 | 0.9 | 0.1 | 0.0 | ||
0.3 | 0.7 | 0.0 | 0.0 | … | 0.0 | 0.5 | 0.5 | 0.0 | ||
0.0 | 1.0 | 0.0 | 0.2 | … | 0.7 | 0.0 | 0.6 | 0.4 | ||
0.0 | 0.8 | 0.2 | 0.2 | … | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.0 | 0.9 | 0.1 | 0.6 | … | 0.0 | 0.9 | 0.1 | 0.0 | ||
0.6 | 0.4 | 0.0 | 1.0 | … | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.0 | 0.9 | 0.1 | 0.0 | … | 0.0 | 1.0 | 0.0 | 0.0 | ||
0.5 | 0.5 | 0.0 | 0.2 | … | 0.3 | 0.0 | 0.3 | 0.7 | ||
0.1 | 0.9 | 0.0 | 0.2 | … | 0.0 | 0.3 | 0.7 | 0.0 | ||
0.0 | 0.0 | 0.0 | 0.0 | … | 0.0 | 0.0 | 0.0 | 0.0 |
数据集 | 对象数 | 属性数 | 条件数 | 概念数 |
---|---|---|---|---|
数据集1 | 31 | 3 | 3 | 122 |
数据集2 | 14 | 5 | 3 | 180 |
数据集3 | 95 | 5 | 8 | 3 198 |
Tab. 8 Each dimensional data of dataset and number of concepts
数据集 | 对象数 | 属性数 | 条件数 | 概念数 |
---|---|---|---|---|
数据集1 | 31 | 3 | 3 | 122 |
数据集2 | 14 | 5 | 3 | 180 |
数据集3 | 95 | 5 | 8 | 3 198 |
关联规则 | 置信度 | 关联规则 | 置信度 |
---|---|---|---|
0.75 | 0.74 | ||
0.74 | 0.56 | ||
0.74 | 0.53 |
Tab. 9 Association rule base in Dataset 1
关联规则 | 置信度 | 关联规则 | 置信度 |
---|---|---|---|
0.75 | 0.74 | ||
0.74 | 0.56 | ||
0.74 | 0.53 |
关联规则 | 置信度 | 关联规则 | 置信度 |
---|---|---|---|
1.00 | 0.86 | ||
1.00 | 0.84 | ||
0.89 | 0.80 | ||
0.89 |
Tab. 10 Association rule base in Dataset 2
关联规则 | 置信度 | 关联规则 | 置信度 |
---|---|---|---|
1.00 | 0.86 | ||
1.00 | 0.84 | ||
0.89 | 0.80 | ||
0.89 |
关联规则 | 置信度 | 关联规则 | 置信度 |
---|---|---|---|
0.97 | 0.83 | ||
0.97 | 0.83 | ||
0.93 | 0.83 | ||
0.84 | 0.79 | ||
0.84 | 0.71 | ||
0.84 |
Tab. 11 Association rule base in Dataset 3
关联规则 | 置信度 | 关联规则 | 置信度 |
---|---|---|---|
0.97 | 0.83 | ||
0.97 | 0.83 | ||
0.93 | 0.83 | ||
0.84 | 0.79 | ||
0.84 | 0.71 | ||
0.84 |
[1] | WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts [C]// REIDEL I. Ordered Sets: NATO Advanced Study Institutes series 83. Dordrecht: Springer, 1982: 445-470. |
[2] | 郭晓波,赵书良,赵娇娇,等. 基于概念格的多值属性关联规则可视化[J]. 计算机应用, 2013, 33(8): 2198-2203. |
GUO X B, ZHAO S L, ZHAO J J, et al. Visualization of multi-valued attribute association rules based on concept lattice [J]. Journal of Computer Applications, 2013, 33(8): 2198-2203. | |
[3] | LEHMANN F, WILLE R. A triadic approach to formal concept analysis[C]// Proceedings of the 1995 International Conference on Conceptual Structures, LNCS 954. Berlin: Springer, 1995: 32-43. |
[4] | 魏玲,万青,钱婷,等. 三元概念分析综述[J]. 西北大学学报(自然科学版), 2014, 44(5): 689-699. |
WEI L, WAN Q, QIAN T, et al. An overview of triadic concept analysis [J]. Journal of Northwest University (Natural Science Edition), 2014, 44(5): 689-699. | |
[5] | 王霞,李俊余,吴伟志. 三元概念的布尔矩阵表示方法[J]. 计算机科学, 2023, 50(6): 109-115. |
WANG X, LI J Y, WU W Z. Boolean matrix representation of triadic concepts [J]. Computer Science, 2023, 50(6): 109-115. | |
[6] | 王霞,全园,李俊余,等. 三元概念的增量式构造方法[J]. 南京大学学报(自然科学), 2022, 58(1): 19-28. |
WANG X, QUAN Y, LI J Y, et al. Incremental construction method of triadic concepts [J]. Journal of Nanjing University (Natural Science), 2022, 58(1): 19-28. | |
[7] | 刘忠慧,赵琦,邹璐,等. 三元概念的启发式构建及其在社会化推荐中的应用[J]. 计算机科学, 2021, 48(6): 234-240. |
LIU Z H, ZHAO Q, ZOU L, et al. Heuristic construction of triadic concept and its application in social recommendation [J]. Computer Science, 2021, 48(6): 234-240. | |
[8] | 李俊余,李星璇,王霞,等. 基于三元因子分析的三元概念约简[J]. 南京大学学报(自然科学), 2020, 56(4): 480-493. |
LI J Y, LI X X, WANG X, et al. Reduction of triadic concepts based on triadic factor analysis [J]. Journal of Nanjing University (Natural Science), 2020, 56(4): 480-493. | |
[9] | 李俊余,朱荣杰,王霞,等. 三元概念与形式概念的关系[J]. 南京大学学报(自然科学), 2018, 54(4): 786-793. |
LI J Y, ZHU R J, WANG X, et al. The relationship between triadic concepts and formal concepts [J]. Journal of Nanjing University (Natural Science), 2018, 54(4): 786-793. | |
[10] | 汤亚强,范敏,李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(8): 102-106. |
TANG Y Q, FAN M, LI J H. Cognitive system model and approach to transformation of information granules under triadic formal concept analysis [J]. Journal of Shandong University (Natural Science), 2014, 49(8): 102-106. | |
[11] | 祁建军,魏玲. 三元背景及概念三元格的简化[J]. 计算机科学, 2017, 44(9): 53-57. |
QI J J, WEI L. Simplification of triadic contexts and concept trilattices [J]. Computer Science, 2017, 44(9): 53-57. | |
[12] | 李贞,张卓,王黎明. 基于三元概念分析的文本分类算法研究[J]. 计算机科学, 2017, 44(8): 207-215. |
LI Z, ZHANG Z, WANG L M. Research on text classification algorithm based on triadic concept analysis [J]. Computer Science, 2017, 44(8): 207-215. | |
[13] | ZADEH L A. Fuzzy logic = computing with words [J]. IEEE Transactions on Fuzzy Systems, 1996, 4(2): 103-111. |
[14] | ZHANG X, SUN B, CHEN X, et al. An approach to evaluating sustainable supply chain risk management based on BWM and linguistic value soft set theory [J]. Journal of Intelligent and Fuzzy Systems, 2020, 39(3): 4369-4382. |
[15] | PANG K, LI S, LU Y, et al. Association rule mining with fuzzy linguistic information based on attribute partial ordered structure[J]. Soft Computing, 2023, 27(23): 17447-17472. |
[16] | ZOU L, SHI P, PEI Z, et al. On an algebra of linguistic truth-valued intuitionistic lattice-valued logic [J]. Journal of Intelligent and Fuzzy Systems, 2013, 24(3): 447-456. |
[17] | ZHOU Y, ZOU L. TOPSIS method based on intuitionistic fuzzy linguistic concept [C]// Proceedings of the 2022 International Conference on AI Logic and Applications, CCIS 1657. Singapore: Springer, 2022: 106-116. |
[18] | CUI H, DENG A, YUE G, et al. The linguistic concept’s reduction methods under symmetric linguistic-evaluation information [J]. Symmetry, 2023, 15(4): No.813. |
[19] | 李贞. 基于三元概念分析的机器学习算法研究及应用[D]. 郑州:郑州大学, 2017: 13-14. |
LI Z. The research and application of machine learning algorithms based on triadic concept analysis[D]. Zhengzhou: Zhengzhou University, 2017: 13-14. | |
[20] | 王冰洁,张卓,王黎明. 概念三元格渐进式构造算法[J]. 小型微型计算机系统, 2017, 38(9): 2101-2106. |
WANG B J, ZHANG Z, WANG L M. Incremental algorithm for constructing concept trilattices [J]. Journal of Chinese Computer Systems, 2017, 38(9): 2101-2106. |
[1] | LI Xingjia, YANG Qiuhui, HONG Mei, PAN Chunxia, LIU Ruihang. Test case prioritization approach based on historical data and multi-objective optimization [J]. Journal of Computer Applications, 2023, 43(1): 221-226. |
[2] | Xuanyi LI, Yun ZHOU. BNSL-FIM: Bayesian network structure learning algorithm based on frequent item mining [J]. Journal of Computer Applications, 2021, 41(12): 3475-3479. |
[3] | TONG Yuzhen, WANG Yingming. Multi-attribute group decision making method for probabilistic linguistic term set based on regret theory and distance from average solution method [J]. Journal of Computer Applications, 2020, 40(11): 3152-3158. |
[4] | WANG Chunying, ZHANG Xun, ZHAO Jinxiong, YUAN Hui, LI Fangjun, ZHAO Bo, ZHU Xiaoqin, YANG Fan, LYU Shichao. Analysis of attack events based on multi-source alerts [J]. Journal of Computer Applications, 2020, 40(1): 123-128. |
[5] | YU Yongbin, QI Minhui, Nyima Tashi, WANG Lin. Association rule mining algorithm for Hopfield neural network based on threshold adaptive memristor [J]. Journal of Computer Applications, 2019, 39(3): 728-733. |
[6] | CHEN Liu, FENG Shan. Two-level confidence threshold setting method for positive and negative association rules [J]. Journal of Computer Applications, 2018, 38(5): 1315-1319. |
[7] | YIN Yuan, ZHANG Chang, WEN Kai, ZHENG Yunjun. Maximal frequent itemset mining algorithm based on DiffNodeset structure [J]. Journal of Computer Applications, 2018, 38(12): 3438-3443. |
[8] | GU Junhua, WU Junyan, XU Xinyun, XIE Zhijian, ZHANG Suqi. Optimization and implementation of parallel FP-Growth algorithm based on Spark [J]. Journal of Computer Applications, 2018, 38(11): 3069-3074. |
[9] | WANG Shuai, YANG Qiuhui, ZENG Jiayan, WAN Ying, FAN Zhening, ZHANG Guanglan. Application of weighted incremental association rule mining in communication alarm prediction [J]. Journal of Computer Applications, 2018, 38(10): 2875-2880. |
[10] | TAN Zheng, LIU JingLei, YU Hang. Conditional preference mining based on MaxClique [J]. Journal of Computer Applications, 2017, 37(11): 3107-3114. |
[11] | WANG Tao, QIN Xizhong, JIA Zhenhong, NIU Hongmei, CAO Chuanling. Association rules recommendation of microblog friend based on similarity and trust [J]. Journal of Computer Applications, 2016, 36(8): 2262-2267. |
[12] | XU Kaiyong, GONG Xuerong, CHENG Maocai. Audit log association rule mining based on improved Apriori algorithm [J]. Journal of Computer Applications, 2016, 36(7): 1847-1851. |
[13] | XU Yongxiu, LIU Xumin, XU Weixiang. Improved frequent itemset mining algorithm based on interval list [J]. Journal of Computer Applications, 2016, 36(4): 997-1001. |
[14] | YANG Pengkun, PENG Hui, ZHOU Xiaofeng, SUN Yuqing. FP-MFIA: improved algorithm for mining maximum frequent itemsets based on frequent-pattern tree [J]. Journal of Computer Applications, 2015, 35(3): 775-778. |
[15] | HU Shiyu, LUO Diansheng, YANG Shuang, YANG Jingwei. Load forecasting based on multi-variable LS-SVM and fuzzy recursive inference system [J]. Journal of Computer Applications, 2015, 35(2): 595-600. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||