Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3320-3327.DOI: 10.11772/j.issn.1001-9081.2024101517
• Multimedia computing and computer simulation • Previous Articles
Shumin WANG, Shenlin LI(), Xiangling ZHOU
Received:
2024-10-28
Revised:
2025-02-11
Accepted:
2025-02-12
Online:
2025-10-14
Published:
2025-10-10
Contact:
Shenlin LI
About author:
WANG Shumin, born in 2000, M. S. candidate. His research interests include face recognition.Supported by:
通讯作者:
李生林
作者简介:
汪书民(2000—),男,四川泸州人,硕士研究生,主要研究方向:人脸识别基金资助:
CLC Number:
Shumin WANG, Shenlin LI, Xiangling ZHOU. Adaptive face recognition in low light scenarios based on feature fusion[J]. Journal of Computer Applications, 2025, 45(10): 3320-3327.
汪书民, 李生林, 周香伶. 基于特征融合的低光照场景下的自适应人脸识别[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3320-3327.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024101517
方法 | 识别率 | ||
---|---|---|---|
CASIA-FaceV5 | SoF | YaleB | |
CosFace[ | 85.29 | 88.79 | 67.36 |
ArcFace[ | 85.81 | 88.48 | 68.21 |
CurricularFace[ | 86.54 | 90.21 | 70.37 |
MagFace[ | 87.36 | 91.14 | 73.28 |
AdaFace[ | 89.79 | 95.11 | 79.06 |
ARoFace[ | 92.53 | 96.64 | 95.14 |
本文方法(α=0.3) | 91.68 | 97.41 | 95.41 |
本文方法(α=0.5) | 94.67 | 98.22 | 97.24 |
本文方法(α=0.7) | 90.57 | 97.51 | 94.34 |
Tab. 1 Experimental results of LLANet and mainstream methods on common datasets
方法 | 识别率 | ||
---|---|---|---|
CASIA-FaceV5 | SoF | YaleB | |
CosFace[ | 85.29 | 88.79 | 67.36 |
ArcFace[ | 85.81 | 88.48 | 68.21 |
CurricularFace[ | 86.54 | 90.21 | 70.37 |
MagFace[ | 87.36 | 91.14 | 73.28 |
AdaFace[ | 89.79 | 95.11 | 79.06 |
ARoFace[ | 92.53 | 96.64 | 95.14 |
本文方法(α=0.3) | 91.68 | 97.41 | 95.41 |
本文方法(α=0.5) | 94.67 | 98.22 | 97.24 |
本文方法(α=0.7) | 90.57 | 97.51 | 94.34 |
方法 | PSNR/dB↑ | SSIM↑ |
---|---|---|
Retinex-Net[ | 16.774 0 | 0.559 4 |
NPE[ | 16.969 7 | 0.589 4 |
KinD[ | 20.866 5 | 0.802 2 |
Zero-DCE[ | 16.795 5 | 0.557 3 |
RUAS[ | 18.226 0 | 0.717 0 |
URetinex-Net[ | 21.328 2 | 0.834 8 |
Diff-Retinex[ | 21.981 2 | 0.863 1 |
DEANet++[ | 22.542 1 | 0.850 0 |
本文方法 | 22.630 0 | 0.868 6 |
Tab. 2 Comparison of image quality evaluation indicators of different methods on LOL dataset
方法 | PSNR/dB↑ | SSIM↑ |
---|---|---|
Retinex-Net[ | 16.774 0 | 0.559 4 |
NPE[ | 16.969 7 | 0.589 4 |
KinD[ | 20.866 5 | 0.802 2 |
Zero-DCE[ | 16.795 5 | 0.557 3 |
RUAS[ | 18.226 0 | 0.717 0 |
URetinex-Net[ | 21.328 2 | 0.834 8 |
Diff-Retinex[ | 21.981 2 | 0.863 1 |
DEANet++[ | 22.542 1 | 0.850 0 |
本文方法 | 22.630 0 | 0.868 6 |
Fusion | CBAM | ADA | 识别率 | ||
---|---|---|---|---|---|
CASIA-FaceV5 | SoF | YaleB | |||
× | × | × | 89.79 | 95.11 | 79.06 |
√ | × | × | 89.24 | 96.24 | 81.99 |
√ | √ | × | 94.25 | 97.55 | 84.28 |
√ | √ | √ | 94.67 | 98.22 | 97.24 |
Tab. 3 Ablation experimental results of different modules
Fusion | CBAM | ADA | 识别率 | ||
---|---|---|---|---|---|
CASIA-FaceV5 | SoF | YaleB | |||
× | × | × | 89.79 | 95.11 | 79.06 |
√ | × | × | 89.24 | 96.24 | 81.99 |
√ | √ | × | 94.25 | 97.55 | 84.28 |
√ | √ | √ | 94.67 | 98.22 | 97.24 |
CBAM | PSNR/dB | SSIM |
---|---|---|
× | 20.866 5 | 0.802 2 |
√ | 22.630 0 | 0.868 6 |
Tab. 4 Ablation experimental results of image quality
CBAM | PSNR/dB | SSIM |
---|---|---|
× | 20.866 5 | 0.802 2 |
√ | 22.630 0 | 0.868 6 |
[1] | 王坤. 基于卷积神经网络的低光照图像增强算法研究[D]. 赣州:江西理工大学, 2020. |
WANG K. Research on low light image enhancement algorithm based on convolutional neural network[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. | |
[2] | SAADABADI M S E, MALAKSHAN S R, DABOUEI A, et al. ARoFace: alignment robustness to improve low-quality face recognition[C]// Proceedings of the 2024 European Conference on Computer Vision, LNCS 15091. Cham: Springer, 2025: 308-327. |
[3] | TURK M A, PENTLAND A P. Face recognition using Eigenfaces[C]// Proceedings of the 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 1991: 586-591. |
[4] | SHARMA R, SHARMA V K, SINGH A. A review paper on facial recognition techniques[C]// Proceedings of the 5th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud). Piscataway: IEEE, 2021: 617-621. |
[5] | BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class-specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. |
[6] | COMON P. Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36(3): 287-314. |
[7] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems — Volume 1. Red Hook: Curran Associates Inc., 2012: 1097-1105. |
[8] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2025-02-10].. |
[9] | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. |
[10] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
[11] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
[12] | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 815-823. |
[13] | WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]// Proceedings of the 2016 European Conference, LNCS 9911. Cham: Springer, 2016: 499-515. |
[14] | DENG J, ZHOU Y, ZAFEIRIOU S. Marginal loss for deep face recognition[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 2006-2014. |
[15] | WANG H, WANG Y, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5265-5274. |
[16] | DENG J, GUO J, XUE N, et al. ArcFace: additive angular margin loss for deep face recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4685-4694. |
[17] | HUANG Y, WANG Y, TAI Y, et al. CurricularFace: adaptive curriculum learning loss for deep face recognition[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5900-5909. |
[18] | MENG Q, ZHAO S, HUANG Z, et al. MagFace: a universal representation for face recognition and quality assessment[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14220-14229. |
[19] | KIM M, JAIN A K, LIU X. AdaFace: quality adaptive margin for face recognition[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 18729-18738. |
[20] | LAND E H, McCANN J J. Lightness and Retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1-11. |
[21] | 耿馨雨,余磊,唐保香,等. 注意力机制引导暗区域的低光照图像增强[J]. 微电子学与计算机, 2023, 40(3): 20-28. |
GENG X Y, YU L, TANG B X, et al. Attention mechanisms guided low-light image enhancement in dark areas[J]. Microelectronics and Computer, 2023, 40(3): 20-28. | |
[22] | 汪星,贾晓芬. 多支路融合注意力机制的低光照图像增强[J]. 微电子学与计算机, 2022, 39(10): 54-61. |
WANG X, JIA X F. Low light image enhancement with multi-branch fusion attention mechanism[J]. Microelectronics and Computer, 2022, 39(10): 54-61. | |
[23] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
[24] | WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.451. |
[25] | 范溢华,王永振,燕雪峰,等. 人脸识别任务驱动的低光照图像增强算法[J]. 图学学报, 2022, 43(6): 1170-1181. |
FAN Y H, WANG Y Z, YAN X F, et al. Face recognition-driven low-light image enhancement[J]. Journal of Graphics, 2022, 43(6): 1170-1181. | |
[26] | REN D, MA H, SUN L, et al. A novel approach of low-light image used for face recognition[C]// Proceedings of the 4th International Conference on Computer Science and Network Technology. Piscataway: IEEE, 2015: 790-793. |
[27] | HUANG Y H, CHEN H H. Deep face recognition for dim images[J]. Pattern Recognition, 2022, 126: No.108580. |
[28] | WANG S, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548. |
[29] | ZHANG Y, ZHANG J, GUO X. Kindling the darkness: a practical low-light image enhancer[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1632-1640. |
[30] | LI C, GUO C, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225-4238. |
[31] | LIU R, MA L, ZHANG J, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10556-10565. |
[32] | WU W, WENG J, ZHANG P, et al. URetinex-Net: Retinex-based deep unfolding network for low-light image enhancement[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5891-5900. |
[33] | YI X, XU H, ZHANG H, et al. Diff-Retinex: rethinking low-light image enhancement with a generative diffusion model[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 12268-12277. |
[34] | JIANG Y, ZHU J, LI L, et al. A joint network for low-light image enhancement based on Retinex[J]. Cognitive Computation, 2024, 16: 3241-3259. |
[1] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
[2] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
[3] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
[4] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
[5] | Fang WANG, Jing HU, Rui ZHANG, Wenting FAN. Medical image segmentation network with content-guided multi-angle feature fusion [J]. Journal of Computer Applications, 2025, 45(9): 3017-3025. |
[6] | Xuejin WANG, Leilei HUANG, Zhenhui ZHONG. Noise and semantic prior guided low-light image enhancement algorithm [J]. Journal of Computer Applications, 2025, 45(9): 2966-2974. |
[7] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. |
[8] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
[9] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
[10] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
[11] | Chengzhi YAN, Ying CHEN, Kai ZHONG, Han GAO. 3D object detection algorithm based on multi-scale network and axial attention [J]. Journal of Computer Applications, 2025, 45(8): 2537-2545. |
[12] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
[13] | Yimeng XI, Zhen DENG, Qian LIU, Libo LIU. Cross-modal information fusion for video-text retrieval [J]. Journal of Computer Applications, 2025, 45(8): 2448-2456. |
[14] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
[15] | Xiaoqiang ZHAO, Yongyong LIU, Yongyong HUI, Kai LIU. Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2245-2252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||