Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 3855-3863.DOI: 10.11772/j.issn.1001-9081.2024121818
• Data science and technology • Previous Articles Next Articles
Changsheng ZHU1, Chen YANG1, Wenfang FENG2, Peiwen YUAN1
Received:2024-12-27
Revised:2025-03-14
Accepted:2025-03-18
Online:2025-03-27
Published:2025-12-10
Contact:
Chen YANG
About author:ZHU Changsheng, born in 1972, Ph. D., professor. His research interests include high-performance computing and big data, information systems and engineering in manufacturing.Supported by:朱昶胜1, 杨琛1, 冯文芳2, 袁培文1
通讯作者:
杨琛
作者简介:朱昶胜(1972—),男,甘肃秦安人,教授,博士,主要研究方向:高性能计算与大数据、制造业信息化系统与工程基金资助:CLC Number:
Changsheng ZHU, Chen YANG, Wenfang FENG, Peiwen YUAN. High-frequency enhanced time series prediction model based on multi-layer perceptron[J]. Journal of Computer Applications, 2025, 45(12): 3855-3863.
朱昶胜, 杨琛, 冯文芳, 袁培文. 基于多层感知器的高频增强型时间序列预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3855-3863.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024121818
| 数据集 | 通道数 | 时间步 | 细粒度/min | 数据划分 |
|---|---|---|---|---|
| Weather | 21 | 52 696 | 10 | 7∶2∶1 |
| ECL | 321 | 26 304 | 60 | 7∶2∶1 |
| Traffic | 862 | 17 545 | 60 | 7∶2∶1 |
| Solar Energy | 137 | 51 938 | 10 | 7∶2∶1 |
Tab. 1 Experimental datasets
| 数据集 | 通道数 | 时间步 | 细粒度/min | 数据划分 |
|---|---|---|---|---|
| Weather | 21 | 52 696 | 10 | 7∶2∶1 |
| ECL | 321 | 26 304 | 60 | 7∶2∶1 |
| Traffic | 862 | 17 545 | 60 | 7∶2∶1 |
| Solar Energy | 137 | 51 938 | 10 | 7∶2∶1 |
| 数据集 | 预测长度 | HiFNet | NLinear | RLinear | SegRNN | PatchTST | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
| Weather | 96 | 0.144 | 0.193 | 0.145 | 0.194 | 0.145 | 0.193 | 0.147 | 0.208 | 0.150 | 0.199 |
| 192 | 0.185 | 0.232 | 0.189 | 0.237 | 0.189 | 0.235 | 0.193 | 0.256 | 0.198 | 0.243 | |
| 336 | 0.237 | 0.272 | 0.241 | 0.279 | 0.240 | 0.274 | 0.244 | 0.297 | 0.253 | 0.282 | |
| 720 | 0.313 | 0.325 | 0.317 | 0.334 | 0.316 | 0.328 | 0.327 | 0.356 | 0.327 | 0.342 | |
| ECL | 96 | 0.128 | 0.223 | 0.135 | 0.238 | 0.135 | 0.231 | 0.133 | 0.231 | 0.131 | 0.227 |
| 192 | 0.146 | 0.238 | 0.150 | 0.243 | 0.151 | 0.245 | 0.151 | 0.250 | 0.150 | 0.243 | |
| 336 | 0.163 | 0.255 | 0.167 | 0.260 | 0.167 | 0.261 | 0.170 | 0.270 | 0.185 | 0.288 | |
| 720 | 0.198 | 0.287 | 0.206 | 0.295 | 0.206 | 0.293 | 0.207 | 0.305 | 0.218 | 0.311 | |
| Traffic | 96 | 0.377 | 0.261 | 0.424 | 0.295 | 0.419 | 0.291 | 0.555 | 0.274 | 0.384 | 0.267 |
| 192 | 0.393 | 0.269 | 0.457 | 0.299 | 0.430 | 0.295 | 0.576 | 0.275 | 0.403 | 0.274 | |
| 336 | 0.409 | 0.277 | 0.482 | 0.306 | 0.444 | 0.302 | 0.671 | 0.280 | 0.415 | 0.283 | |
| 720 | 0.440 | 0.295 | 0.576 | 0.325 | 0.472 | 0.318 | 0.679 | 0.289 | 0.452 | 0.299 | |
| Solar Energy | 96 | 0.195 | 0.239 | 0.230 | 0.266 | 0.231 | 0.264 | 0.197 | 0.250 | 0.198 | 0.248 |
| 192 | 0.185 | 0.252 | 0.259 | 0.281 | 0.259 | 0.278 | 0.187 | 0.257 | 0.199 | 0.254 | |
| 336 | 0.196 | 0.260 | 0.279 | 0.288 | 0.280 | 0.290 | 0.197 | 0.262 | 0.218 | 0.274 | |
| 720 | 0.224 | 0.266 | 0.281 | 0.289 | 0.280 | 0.289 | 0.225 | 0.266 | 0.238 | 0.285 | |
Tab. 2 Comparison of indicators with different prediction lengths for different models on four datasets
| 数据集 | 预测长度 | HiFNet | NLinear | RLinear | SegRNN | PatchTST | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
| Weather | 96 | 0.144 | 0.193 | 0.145 | 0.194 | 0.145 | 0.193 | 0.147 | 0.208 | 0.150 | 0.199 |
| 192 | 0.185 | 0.232 | 0.189 | 0.237 | 0.189 | 0.235 | 0.193 | 0.256 | 0.198 | 0.243 | |
| 336 | 0.237 | 0.272 | 0.241 | 0.279 | 0.240 | 0.274 | 0.244 | 0.297 | 0.253 | 0.282 | |
| 720 | 0.313 | 0.325 | 0.317 | 0.334 | 0.316 | 0.328 | 0.327 | 0.356 | 0.327 | 0.342 | |
| ECL | 96 | 0.128 | 0.223 | 0.135 | 0.238 | 0.135 | 0.231 | 0.133 | 0.231 | 0.131 | 0.227 |
| 192 | 0.146 | 0.238 | 0.150 | 0.243 | 0.151 | 0.245 | 0.151 | 0.250 | 0.150 | 0.243 | |
| 336 | 0.163 | 0.255 | 0.167 | 0.260 | 0.167 | 0.261 | 0.170 | 0.270 | 0.185 | 0.288 | |
| 720 | 0.198 | 0.287 | 0.206 | 0.295 | 0.206 | 0.293 | 0.207 | 0.305 | 0.218 | 0.311 | |
| Traffic | 96 | 0.377 | 0.261 | 0.424 | 0.295 | 0.419 | 0.291 | 0.555 | 0.274 | 0.384 | 0.267 |
| 192 | 0.393 | 0.269 | 0.457 | 0.299 | 0.430 | 0.295 | 0.576 | 0.275 | 0.403 | 0.274 | |
| 336 | 0.409 | 0.277 | 0.482 | 0.306 | 0.444 | 0.302 | 0.671 | 0.280 | 0.415 | 0.283 | |
| 720 | 0.440 | 0.295 | 0.576 | 0.325 | 0.472 | 0.318 | 0.679 | 0.289 | 0.452 | 0.299 | |
| Solar Energy | 96 | 0.195 | 0.239 | 0.230 | 0.266 | 0.231 | 0.264 | 0.197 | 0.250 | 0.198 | 0.248 |
| 192 | 0.185 | 0.252 | 0.259 | 0.281 | 0.259 | 0.278 | 0.187 | 0.257 | 0.199 | 0.254 | |
| 336 | 0.196 | 0.260 | 0.279 | 0.288 | 0.280 | 0.290 | 0.197 | 0.262 | 0.218 | 0.274 | |
| 720 | 0.224 | 0.266 | 0.281 | 0.289 | 0.280 | 0.289 | 0.225 | 0.266 | 0.238 | 0.285 | |
| 数据集 | 预测长度 | HiFNet | HiFNet-AvgPool | ||
|---|---|---|---|---|---|
| MSE | MAE | MSE | MAE | ||
| Weather | 96 | 0.144 | 0.193 | 0.144 | 0.192 |
| 192 | 0.185 | 0.232 | 0.187 | 0.235 | |
| 336 | 0.237 | 0.272 | 0.239 | 0.275 | |
| 720 | 0.313 | 0.325 | 0.315 | 0.326 | |
| ECL | 96 | 0.128 | 0.223 | 0.130 | 0.225 |
| 192 | 0.146 | 0.238 | 0.148 | 0.241 | |
| 336 | 0.163 | 0.255 | 0.167 | 0.260 | |
| 720 | 0.198 | 0.287 | 0.202 | 0.289 | |
| Traffic | 96 | 0.377 | 0.261 | 0.383 | 0.265 |
| 192 | 0.393 | 0.269 | 0.402 | 0.274 | |
| 336 | 0.409 | 0.277 | 0.417 | 0.280 | |
| 720 | 0.440 | 0.295 | 0.442 | 0.301 | |
Tab. 3 Ablation study results of replacing ASD module
| 数据集 | 预测长度 | HiFNet | HiFNet-AvgPool | ||
|---|---|---|---|---|---|
| MSE | MAE | MSE | MAE | ||
| Weather | 96 | 0.144 | 0.193 | 0.144 | 0.192 |
| 192 | 0.185 | 0.232 | 0.187 | 0.235 | |
| 336 | 0.237 | 0.272 | 0.239 | 0.275 | |
| 720 | 0.313 | 0.325 | 0.315 | 0.326 | |
| ECL | 96 | 0.128 | 0.223 | 0.130 | 0.225 |
| 192 | 0.146 | 0.238 | 0.148 | 0.241 | |
| 336 | 0.163 | 0.255 | 0.167 | 0.260 | |
| 720 | 0.198 | 0.287 | 0.202 | 0.289 | |
| Traffic | 96 | 0.377 | 0.261 | 0.383 | 0.265 |
| 192 | 0.393 | 0.269 | 0.402 | 0.274 | |
| 336 | 0.409 | 0.277 | 0.417 | 0.280 | |
| 720 | 0.440 | 0.295 | 0.442 | 0.301 | |
| 数据集 | 预测长度 | HiFNet | MLP | ||
|---|---|---|---|---|---|
| MSE | MAE | MSE | MAE | ||
| Weather | 96 | 0.144 | 0.193 | 0.146 | 0.207 |
| 192 | 0.185 | 0.232 | 0.193 | 0.256 | |
| 336 | 0.237 | 0.272 | 0.245 | 0.296 | |
| 720 | 0.313 | 0.325 | 0.325 | 0.355 | |
| ECL | 96 | 0.128 | 0.223 | 0.131 | 0.225 |
| 192 | 0.146 | 0.238 | 0.148 | 0.240 | |
| 336 | 0.163 | 0.255 | 0.165 | 0.258 | |
| 720 | 0.198 | 0.287 | 0.201 | 0.289 | |
| Traffic | 96 | 0.377 | 0.261 | 0.380 | 0.262 |
| 192 | 0.393 | 0.269 | 0.400 | 0.271 | |
| 336 | 0.409 | 0.277 | 0.413 | 0.278 | |
| 720 | 0.440 | 0.295 | 0.443 | 0.298 | |
Tab. 4 Ablation study results of removing ASD module and grouped linear layer
| 数据集 | 预测长度 | HiFNet | MLP | ||
|---|---|---|---|---|---|
| MSE | MAE | MSE | MAE | ||
| Weather | 96 | 0.144 | 0.193 | 0.146 | 0.207 |
| 192 | 0.185 | 0.232 | 0.193 | 0.256 | |
| 336 | 0.237 | 0.272 | 0.245 | 0.296 | |
| 720 | 0.313 | 0.325 | 0.325 | 0.355 | |
| ECL | 96 | 0.128 | 0.223 | 0.131 | 0.225 |
| 192 | 0.146 | 0.238 | 0.148 | 0.240 | |
| 336 | 0.163 | 0.255 | 0.165 | 0.258 | |
| 720 | 0.198 | 0.287 | 0.201 | 0.289 | |
| Traffic | 96 | 0.377 | 0.261 | 0.380 | 0.262 |
| 192 | 0.393 | 0.269 | 0.400 | 0.271 | |
| 336 | 0.409 | 0.277 | 0.413 | 0.278 | |
| 720 | 0.440 | 0.295 | 0.443 | 0.298 | |
| 模型 | 训练时间/s | 浮点运算次数/MFLOPs |
|---|---|---|
| HiFNet | 100 | 4 052 |
| MLP | 90 | 225 |
| NLinear | 178 | 140 |
| RLinear | 240 | 140 |
| SegRNN | 100 | 7 116 |
| PatchTST | 847 | 198 873 |
Tab. 5 Comparison of training time and FLOPs of different models
| 模型 | 训练时间/s | 浮点运算次数/MFLOPs |
|---|---|---|
| HiFNet | 100 | 4 052 |
| MLP | 90 | 225 |
| NLinear | 178 | 140 |
| RLinear | 240 | 140 |
| SegRNN | 100 | 7 116 |
| PatchTST | 847 | 198 873 |
| [1] | GUO H, ZHANG J, ZHANG J, et al. Prediction of highway blocking loss based on ensemble learning fusion model[J]. Electronics, 2022, 11(17): No.2792. |
| [2] | YU W, WANG S, ZHANG C, et al. Integrating spatio-temporal and generative adversarial networks for enhanced nowcasting performance[J]. Remote Sensing, 2023, 15(15): No.3720. |
| [3] | 孙卓远,吕学文,王继军. 基于门控多层感知机和Informer的多通道电力负荷预测[J]. 人工智能与机器人研究, 2024, 13(2): 375-387. |
| SUN Z Y, LYU X W, WANG J J. Multi-channel power load forecasting based on gated multilayer perceptron and Informer[J]. Artificial Intelligence and Robotics Research, 2024, 13(2): 375-387. | |
| [4] | ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 11106-11115. |
| [5] | ZENG A, CHEN M, ZHANG L, et al. Are Transformers effective for time series forecasting?[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023:11121-11128. |
| [6] | LI W, MENG X, CHEN C, et al. Mlinear: rethink the linear model for time-series forecasting [EB/OL]. [2024-11-01]. . |
| [7] | LI Z, QI S, LI Y, et al. Revisiting long-term time series forecasting: an investigation on linear mapping [EB/OL]. [2024-11-01]. . |
| [8] | LAKSHMI K, REDDY D K, SHARMA M R. Integration of hybrid ARIMA artificial neural networks for accurate platinum price prediction[J]. Communications on Applied Nonlinear Analysis, 2024, 31(6s): 61-73. |
| [9] | HWANG Y, TONG A, CHOI J. Automatic construction of nonparametric relational regression models for multiple time series[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 3030-3039. |
| [10] | FU Z, WU Y, LIU X. A tensor-based deep LSTM forecasting model capturing the intrinsic connection in multivariate time series[J]. Applied Intelligence, 2023, 53(12): 15873-15888. |
| [11] | LIN S, LIN W, WU W, et al. SegRNN: segment recurrent neural network for long-term time series forecasting [EB/OL]. [2024-11-01]. . |
| [12] | DARLOW L, DENG Q, HASSAN A, et al. DAM: towards a foundation model for time series forecasting [EB/OL]. [2024-11-01]. . |
| [13] | NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with Transformers [EB/OL]. [2024-11-01]. . |
| [14] | LI Z, ZHANG X, DONG Z. TSF-Transformer: a time series forecasting model for exhaust gas emission using Transformer[J]. Applied Intelligence, 2023, 53(13): 17211-17225. |
| [15] | ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 27268-27286. |
| [16] | ZHANG C, ZHOU T, WEN Q, et al. TFAD: a decomposition time series anomaly detection architecture with time-frequency analysis[C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York.: ACM, 2022: 2497-2507. |
| [17] | XU Z Q J, ZHANG Y, XIAO Y. Training behavior of deep neural network in frequency domain[C]// Proceedings of the 2019 International Conference on Neural Information Processing, LNCS 11953. Cham: Springer, 2019: 264-274. |
| [18] | RAHANMAN N, BARATIN A, ARPIT D, et al. On the spectral bias of neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 5301-5310. |
| [19] | XU Z Q J, ZHANG Y, LUO T, et al. Frequency principle: Fourier analysis sheds light on deep neural networks[J]. Computer Physics Communications, 2019, 28(5): 1746-1767. |
| [20] | XU Z, ZENG A, XU Q. FITS: modeling time series with 10k parameters[EB/OL]. [2024-11-01].. |
| [21] | EKAMBARAM V, JATI A, NGUYEN N, et al. TSMixer: lightweight MLP-Mixer model for multivariate time series forecasting[C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 459-469. |
| [22] | RAGHU M, POOLE B, KLEINBERG J, et al. On the expressive power of deep neural networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 2847-2854. |
| [23] | POOLE B, LAHIRI S, RAGHU M, et al. Exponential expressivity in deep neural networks through transient chaos[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3368-3376. |
| [24] | KIM T, KIM J, TAE Y, et al. Reversible instance normalization for accurate time-series forecasting against distribution shift[EB/OL]. [2024-11-01]. . |
| [25] | RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[EB/OL]. [2024-11-01]. . |
| [1] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
| [2] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
| [3] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
| [4] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
| [5] | Lilin FAN, Fukang CAO, Wanting WANG, Kai YANG, Zhaoyu SONG. Intermittent demand forecasting method based on adaptive matching of demand patterns [J]. Journal of Computer Applications, 2024, 44(9): 2747-2755. |
| [6] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. |
| [7] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
| [8] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
| [9] | Wenbo LIU, Lianfei YU, Dongmei XIE, Chuang CAI, Zhijian QU, Chongguang REN. Long-term prediction model of time series based on multi-scale feature fusion [J]. Journal of Computer Applications, 2024, 44(11): 3435-3441. |
| [10] | Liqing QIU, Xiaopan SU. Personalized multi-layer interest extraction click-through rate prediction model [J]. Journal of Computer Applications, 2024, 44(11): 3411-3418. |
| [11] | Jin XIA, Zhengqun WANG, Shiming ZHU. Traffic flow prediction model based on time series decomposition [J]. Journal of Computer Applications, 2023, 43(4): 1129-1135. |
| [12] | Yating SU, Cuixiang LIU. Three-dimensional human reconstruction model based on high-resolution net and graph convolutional network [J]. Journal of Computer Applications, 2023, 43(2): 583-588. |
| [13] | Yiping LANG, Wentao MAO, Tiejun LUO, Lilin FAN, Yingying REN, Xia LIU. Predictability evaluation and joint forecasting method for intermittent time series [J]. Journal of Computer Applications, 2022, 42(9): 2722-2731. |
| [14] | Haiwei FAN, Ruichi ZHANG, Yisheng AN, Jiajie QIN. Recommendation algorithm for online learning resources based on double-end neighbor fusion knowledge graph [J]. Journal of Computer Applications, 2022, 42(10): 3054-3059. |
| [15] | XIAO Yong, ZHENG Kaihong, ZHENG Zhenjing, QIAN Bin, LI Sen, MA Qianli. Multi-scale skip deep long short-term memory network for short-term multivariate load forecasting [J]. Journal of Computer Applications, 2021, 41(1): 231-236. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||