Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 583-588.DOI: 10.11772/j.issn.1001-9081.2021122075
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Received:
2021-12-09
Revised:
2022-02-20
Accepted:
2022-02-23
Online:
2023-02-08
Published:
2023-02-10
Contact:
Cuixiang LIU
About author:
SU Yating, born in 1995, M. S. candidate. Her research interests include information perception, machine learning.
Supported by:
通讯作者:
刘翠响
作者简介:
苏亚婷(1995—),女,河北石家庄人,硕士研究生,主要研究方向:信息感知、机器学习;
基金资助:
CLC Number:
Yating SU, Cuixiang LIU. Three-dimensional human reconstruction model based on high-resolution net and graph convolutional network[J]. Journal of Computer Applications, 2023, 43(2): 583-588.
苏亚婷, 刘翠响. 基于高分辨率网络和图卷积网络的三维人体重建模型[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 583-588.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122075
模型 | F1 | 准确率 | 模型 | F1 | 准确率 |
---|---|---|---|---|---|
SMPLify | 84.90 | 90.56 | CMR | 87.10 | 91.55 |
HMR | 86.95 | 91.02 | 本文模型 | 88.03 | 92.41 |
Tab. 1 Reconstruction performance comparison
模型 | F1 | 准确率 | 模型 | F1 | 准确率 |
---|---|---|---|---|---|
SMPLify | 84.90 | 90.56 | CMR | 87.10 | 91.55 |
HMR | 86.95 | 91.02 | 本文模型 | 88.03 | 92.41 |
视频帧 | SMPLify | HMR | CMR | 本文 |
---|---|---|---|---|
平均 | 943.57 | 235.73 | 181.80 | 97.73 |
TS1 | 844.13 | 187.09 | 145.70 | 63.36 |
TS2 | 897.08 | 283.63 | 172.57 | 89.76 |
TS3 | 1 059.01 | 251.29 | 160.07 | 91.96 |
TS4 | 974.92 | 265.72 | 233.98 | 106.48 |
TS5 | 856.23 | 172.19 | 208.39 | 116.07 |
TS6 | 1 030.02 | 254.45 | 170.09 | 118.73 |
Tab. 2 MPJPE error results
视频帧 | SMPLify | HMR | CMR | 本文 |
---|---|---|---|---|
平均 | 943.57 | 235.73 | 181.80 | 97.73 |
TS1 | 844.13 | 187.09 | 145.70 | 63.36 |
TS2 | 897.08 | 283.63 | 172.57 | 89.76 |
TS3 | 1 059.01 | 251.29 | 160.07 | 91.96 |
TS4 | 974.92 | 265.72 | 233.98 | 106.48 |
TS5 | 856.23 | 172.19 | 208.39 | 116.07 |
TS6 | 1 030.02 | 254.45 | 170.09 | 118.73 |
视频帧 | SMPLify | HMR | CMR | 本文 |
---|---|---|---|---|
平均 | 138.85 | 130.63 | 97.38 | 64.63 |
TS1 | 171.14 | 102.07 | 75.29 | 41.72 |
TS2 | 145.51 | 132.44 | 112.70 | 60.29 |
TS3 | 123.27 | 142.19 | 91.94 | 58.60 |
TS4 | 135.35 | 152.72 | 110.51 | 66.00 |
TS5 | 138.76 | 108.19 | 85.66 | 73.86 |
TS6 | 119.09 | 146.15 | 108.15 | 87.31 |
Tab. 3 Reconstruction error results
视频帧 | SMPLify | HMR | CMR | 本文 |
---|---|---|---|---|
平均 | 138.85 | 130.63 | 97.38 | 64.63 |
TS1 | 171.14 | 102.07 | 75.29 | 41.72 |
TS2 | 145.51 | 132.44 | 112.70 | 60.29 |
TS3 | 123.27 | 142.19 | 91.94 | 58.60 |
TS4 | 135.35 | 152.72 | 110.51 | 66.00 |
TS5 | 138.76 | 108.19 | 85.66 | 73.86 |
TS6 | 119.09 | 146.15 | 108.15 | 87.31 |
层数N | 重建 误差/mm | MPJPE/mm | 层数N | 重建 误差/mm | MPJPE/mm |
---|---|---|---|---|---|
0 | 181.52 | 447.78 | 3 | 105.78 | 180.05 |
1 | 183.90 | 259.01 | 4 | 81.84 | 117.69 |
2 | 122.02 | 224.78 | 5 | 55.61 | 88.60 |
Tab. 4 Ablation experiment on MPI-INF-3DPH dataset
层数N | 重建 误差/mm | MPJPE/mm | 层数N | 重建 误差/mm | MPJPE/mm |
---|---|---|---|---|---|
0 | 181.52 | 447.78 | 3 | 105.78 | 180.05 |
1 | 183.90 | 259.01 | 4 | 81.84 | 117.69 |
2 | 122.02 | 224.78 | 5 | 55.61 | 88.60 |
头部姿态约束 | 重建误差 | ||
---|---|---|---|
TS2 | TS4 | TS6 | |
无 | 112.49 | 114.12 | 136.36 |
有 | 63.48 | 66.88 | 89.95 |
Tab. 5 Influence of head joints on reconstruction error
头部姿态约束 | 重建误差 | ||
---|---|---|---|
TS2 | TS4 | TS6 | |
无 | 112.49 | 114.12 | 136.36 |
有 | 63.48 | 66.88 | 89.95 |
1 | 杨继魁. 基于Kinect单次拍摄数据准确估计人体全身体型与姿态的研究[D]. 合肥:安徽大学, 2019:10-16. |
YANG J K. Accurately estimating the whole body shape and pose of human body based on Kinect single shot data[D]. Hefei: Anhui University, 2019: 10-16. | |
2 | LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 2015, 34(6): No.248. 10.1145/2816795.2818013 |
3 | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696. 10.1109/cvpr.2019.00584 |
4 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
5 | 张亚凤,刘翠响,马杰,等. 基于多特征点匹配的三维人体姿态重建[J]. 激光与光电子学进展, 2022, 59(16):325-332. 10.3788/lop202259.1615003 |
ZHANG Y F, LIU C X, MA J, et al. Three-dimensional human pose reconstruction based on multifeature point matching[J]. Laser and Optoelectronics Progress, 2022, 59(16):325-332. 10.3788/lop202259.1615003 | |
6 | ANGUELOV D, SRINIVASAN P, KOLLER D, et al. SCAPE: shape completion and animation of people[J]. ACM Transactions on Graphics, 2005, 24(3): 408-416. 10.1145/1073204.1073207 |
7 | GUAN P, WEISS A, BĂLAN A O, et al. Estimating human shape and pose from a single image[C]// Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 1381-1388. 10.1109/iccv.2009.5459300 |
8 | BĂLAN A O, SIGAL L, BLACK M J, et al. Detailed human shape and pose from images[C]// Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2007: 1-8. 10.1109/cvpr.2007.383340 |
9 | BOBO F, KANAZAWA A, LASSNER C, et al. Keep it SMPL: automatic estimation of 3D human pose and shape from a single image[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9909. Cham: Springer, 2016: 561-578. |
10 | HUANG Y H, BOGO F, LASSNER C, et al. Towards accurate marker-less human shape and pose estimation over time[C]// Proceedings of the 2017 International Conference on 3D Vision. Piscataway: IEEE, 2017: 421-430. 10.1109/3dv.2017.00055 |
11 | LASSNER C, ROMERO J, KIEFEL M, et al. Unite the people: closing the loop between 3D and 2D human representations[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4704-4713. 10.1109/cvpr.2017.500 |
12 | ZANFIR A, MARINOIU E, SMINCHISESCU C. Monocular 3D pose and shape estimation of multiple people in natural scenes —the importance of multiple scene constraints[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2148-2157. 10.1109/cvpr.2018.00229 |
13 | DIBRA E, JAIN H, ÖZTIRELI C, et al. HS-Nets: estimating human body shape from silhouettes with convolutional neural networks[C]// Proceedings of the 4th International Conference on 3D Vision. Piscataway: IEEE, 2016: 108-117. 10.1109/3dv.2016.19 |
14 | TAN J K V, BUDVYTIS I, CIPOLLA R. Indirect deep structured learning for 3D human body shape and pose prediction[C]// Proceedings of the 2017 British Machine Vision Conference Durham: BMVA Press, 2017: No.722. 10.5244/c.31.15 |
15 | TUNG H Y F, TUNG H W, YUMER E, et al. Self-supervised learning of motion capture[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:5242-5252. |
16 | KANAZAWA A, BLACK M J, JACOBS D W, et al. End-to-end recovery of human shape and pose[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7122-7131. 10.1109/cvpr.2018.00744 |
17 | KOLOTOUROS N, PAVLAKOS G, BLACK M J, et al. Learning to reconstruct 3D human pose and shape via model-fitting in the loop[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 2252-2261. 10.1109/iccv.2019.00234 |
18 | ZHANG T S, HUANG B Z, WANG Y G. Object-occluded human shape and pose estimation from a single color image[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7374-7383. 10.1109/cvpr42600.2020.00740 |
19 | LI Z G, OSKARSSON M, HEYDEN A. 3D human pose and shape estimation through collaborative learning and multi-view model-fitting[C]// Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 1887-1896. 10.1109/wacv48630.2021.00193 |
20 | KOLOTOUROS N, PAVLAKOS G, DANIILIDIS K. Convolutional mesh regression for single-image human shape reconstruction[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4496-4505. 10.1109/cvpr.2019.00463 |
21 | XIE H Y, ZHONG Y Q, YU Z C, et al. Non-parametric anthropometric graph convolutional network for virtual mannequin reconstruction[J]. IEEE Access, 2020, 8: 3539-3550. 10.1109/access.2019.2962833 |
22 | ZHANG S Z, XIAO N F. Detailed 3D human body reconstruction from a single image based on mesh deformation[J]. IEEE Access, 2021, 9: 8595-8603. 10.1109/access.2021.3049548 |
23 | CHENG K L, TONG R F, TANG M, et al. Parametric human body reconstruction based on sparse key points[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(11): 2467-2479. 10.1109/tvcg.2015.2511751 |
24 | BOGO F, ROMERO J, LOPER M, et al. FAUST: dataset and evaluation for 3D mesh registration[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 3794-3801. 10.1109/cvpr.2014.491 |
25 | von MARCARD T, HENSCHEL R, BLACK M J, et al. Recovering accurate 3D human pose in the wild using IMUs and a moving camera[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11214. Cham: Springer, 2018: 614-631. |
26 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755. |
27 | ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 3686-3693. 10.1109/cvpr.2014.471 |
28 | JOHNSON S, EVERINGHAM M. Clustered pose and nonlinear appearance models for human pose estimation[C]// Proceedings of the 2010 British Machine Vision Conference. Durham: BMVA Press, 2010: No.12. 10.5244/c.24.12 |
29 | MEHTA D, RHODIN H, CASAS D, et al. Monocular 3D human pose estimation in the wild using improved CNN supervision[C]// Proceedings of the 2017 International Conference on 3D Vision. Piscataway: IEEE, 2017: 506-516. 10.1109/3dv.2017.00064 |
[1] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[2] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[3] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[4] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[5] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
[6] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
[7] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. |
[8] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. |
[9] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. |
[10] | Nengqiang XIANG, Xiaofei ZHU, Zhaoze GAO. Information diffusion prediction model of prototype-aware dual-channel graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(10): 3260-3266. |
[11] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. |
[12] | Wanting JI, Wenyi LU, Yuhang MA, Linlin DING, Baoyan SONG, Haolin ZHANG. Machine reading comprehension event detection based on relation-enhanced graph convolutional network [J]. Journal of Computer Applications, 2024, 44(10): 3288-3293. |
[13] | Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism [J]. Journal of Computer Applications, 2024, 44(1): 311-317. |
[14] | Yi ZHANG, Gangsheng CAI, Zhenmei WANG. Long non-coding RNA-disease association prediction model based on semantic and global dual attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2125-2132. |
[15] | Yuan WEI, Yan LIN, Shengnan GUO, Youfang LIN, Huaiyu WAN. Prediction of taxi demands between urban regions by fusing origin-destination spatial-temporal correlation [J]. Journal of Computer Applications, 2023, 43(7): 2100-2106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||