[1]MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques [C]// Proceedings of the 2005 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems. New York: ACM Press, 2005: 50-60.[2]徐鹏,刘琼,林森.基于支持向量机的Internet流量分类研究[J].计算机研究与发展,2009,46(3):407-414.[3]胡婷,王勇,陶晓玲.混合模式的网络流量分类方法[J].计算机应用,2010,30(10):2653-2655.[4]BERNAILLE L, TEIXEIRA R, SALAMATIAN K. Early application identification [C]// Proceedings of the 2006 ACM Conference on Emerging Networking Experiments and Technologies. New York: ACM Press, 2006: 70-82.[5]ERMAN J, ARLITT M, MAHANTI A. Traffic classification using clustering algorithms [C]// Proceedings of the 2006 SIGCOMM Workshop on Mining Network Data. New York: ACM Press, 2006: 281-286.[6]刘琼,刘珍,黄敏.基于机器学习的IP流量分类研究[J].计算机科学,2010,37(12):35-40.[7]STREHL A, GHOSH J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions [J]. Journal of Machine Learning Research, 2003, 3(3): 583-617.[8]TOPCHY A, JAIN A K, PUNCH W. Clustering ensembles: models of consensus and weak partitions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1866-1881.[9]唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502.[10]罗会兰.聚类集成关键技术研究[D].杭州:浙江大学,2007.[11]ERMAN J, MAHANTI A, ARLITT M. Semi-supervised network traffic classification [C]// Proceedings of the 2007 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems. New York: ACM Press, 2007: 369-370.[12]LI W, CANINI M, MOORE A W, et al. Efficient application identification and the temporal and spatial stability of classification schema [J]. Computer Networks, 2009, 53(6): 790-809. |