Journal of Computer Applications ›› 2017, Vol. 37 ›› Issue (2): 546-552.DOI: 10.11772/j.issn.1001-9081.2017.02.0546
Previous Articles Next Articles
ZHOU Shangbo1, WANG Liping1, YIN Xuehui2
Received:
2016-08-17
Revised:
2016-09-26
Online:
2017-02-11
Published:
2017-02-10
Supported by:
周尚波1, 王李平1, 尹学辉2
通讯作者:
周尚波,shbzhou@cqu.edu.cn
作者简介:
周尚波(1963-),男,广西宁明人,教授,博士生导师,博士,主要研究方向:视频与图像处理、人工神经网络、非线性动力学;王李平(1981-),男,河南新乡人,博士研究生,主要研究方向:分数阶偏微分方程、非线性动力学、模式识别、图像重构;尹学辉(1986-),男,四川广安人,讲师,博士,主要研究方向:分数阶微积分在图像中的应用、非线性动力学。
基金资助:
CLC Number:
ZHOU Shangbo, WANG Liping, YIN Xuehui. Applications of fractional partial differential equations in image processing[J]. Journal of Computer Applications, 2017, 37(2): 546-552.
周尚波, 王李平, 尹学辉. 分数阶偏微分方程在图像处理中的应用[J]. 计算机应用, 2017, 37(2): 546-552.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2017.02.0546
[1] BUADES A, COLL B, MOREL J-M. A review of image denoising algorithms, with a new one[J]. SIAM Journal on Multiscale Modeling & Simulation, 2005, 4(2):490-530. [2] CHAN T F, ESEDOGLU S, PARK F, et al. Recent developments in total variation image restoration[M]//Handbook of Mathematical Models in Computer Vision. Berlin:Springer-Verlag, 2005:1-18. [3] AUBERT G, KORNPROBST P. Mathematical Problems in Image Processing:Partial Differential Equations and the Calculus of Variations[M]. 2nd ed. Berlin:Springer-Verlag, 2006:213-222. [4] MILANFAR P. A tour of modern image filtering[EB/OL].[2016-06-15]. https://users.soe.ucsc.edu/~milanfar/publications/journal/ModernTour_FinalSubmission.pdf. [5] MILANFAR P. A tour of modern image filtering:new insights and methods, both practical and theoretical[J]. IEEE Signal Processing Magazine, 2013, 30(1):106-128. [6] 王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社,2008:141-159. (WANG D K, HOU Y Q, PENG J Y. Partial Differential Equation Method for Image Processing[M]. Beijing:Scicence Press, 2008:141-159.). [7] RUDIN L I, OSHER S, FATEMIN E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1/2/3/4):259-268. [8] CHAN T, MARQUINA A, MULET P. High-order total variation-based image restoration[J]. SIAM Journal on Scientific Computing, 2000, 22(2):503-516. [9] DIDAS S. Higher Order Variational Methods for Noise Removal in Signals and Images[D]. Saarbrücken, Germany:Saarland University, 2004:29-42. [10] CHAN T F, ESEDOGLU S, PARK F. A fourth order dual method for staircase reduction in texture extraction and image restoration problems[C]//ICIP 2017:Proceedings of 201017th IEEE International Conference on Image Processing. Piscataway, NJ:IEEE, 2010:4137-4140. [11] LIU X, HUANG L, GUO Z. Adaptive fourth-order partial differential equation filter for image denoising[J]. Applied Mathematics Letters, 2011, 24(8):1282-1288. [12] LYSAKER M, TAI X-C. Iterative image restoration combining total variation minimization and a second-order functional[J]. International Journal of Computer Vision, 2006, 66(1):5-18. [13] LI F, SHEN C, FAN J, et al. Image restoration combining a total variational filter and a fourth-order filter[J]. Journal of Visual Communication and Image Representation, 2007, 18(4):322-330. [14] LYSAKER M, LUNDERVOLD A, TAI X-C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2003, 12(12):1579-1590. [15] ZHANG J, WEI Z. A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising[J]. Applied Mathematical Modelling, 2011, 35(5):2516-2528. [16] 郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011:198-200. (GUO B L, PU X K, HUANG F H. Fractional Partial Differential Equations And Their Numerical Solutions[M]. Beijing:Science Press, 2011:198-200.). [17] BAI J, FENG X-C. Fractional-order anisotropic diffusion for image denoising[J]. IEEE Transactions on Image Processing, 2007, 16(10):2492-2502. [18] 杨柱中,周激流,黄梅,等.基于分数阶微分的边缘检测[J].四川大学学报(工程科学版),2008,40(1):152-157. (YANG Z Z, ZHOU J L, HUANG M, et al. Edge detection based on fractional differential[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(1):152-157.). [19] RODIECH R W. Quantitative analysis of cat retinal ganglion cell response to visual stimuli[J]. Vision Research, 1965, 5(12):583-601. [20] 蒲亦非.分数阶微积分在现代信号分析与处理中应用的研究[D].成都:四川大学,2006:14. (PU Y F. Research on application of fractional calculus to latest signal analysis and processing[D]. Chengdu:Sichuan University, 2006:14.). [21] YIN X, ZHOU S. Image structure-preserving denoising based on difference curvature driven fractional nonlinear diffusion[J]. Mathematical Problems in Engineering, 2015, 2015:Article ID 930984. [22] YIN X H, ZHOU S B, SIDDIQUE M A. Fractional nonlinear anisotropic diffusion with p-Laplace variation method for image restoration[J]. Multimedia Tool and Applications, 2016, 75(8):4505-4526. [23] ZHANG W, LI J, YANG Y. Spatial fractional telegraph equation for image structure preserving denoising[J]. Signal Processing, 2015, 107:368-377. [24] TIAN D, XUE D, WANG D. A fractional-order adaptive regularization primal-dual algorithm for image denoising[J]. Information Sciences, 2015, 296:147-159. [25] 黄果,许黎,陈庆利,等.基于时间-空间分数阶偏微分方程的图像去噪模型[J].系统工程与电子技术,2012,34(8):1741-1752. (HUANG G, XU L, CHEN Q L, et al. Research on image denoising based on time-space fractional partial differential equations[J]. Systems Engineering and Electronics, 2012, 34(8):1741-1752.). [26] SHKVARKO Y V, TUXPAN J. SANTOS S R. l2-l1 structured descriptive experiment design regularization based enhancement of fractional SAR imagery[J]. Signal Processing, 2013, 93(12):3553-3566. [27] 张鑫,王卫星,张元方,等.基于分数阶微分及改进Retinex的模糊航空图像增强[J].计算机应用研究,2015,32(9):2844-2848. (ZHANG X. WANG W X. ZHANG Y F, et al. Vague aerial image enhancement on fractional differential and improved Retinex[J]. Application Research of Computers, 2015, 32(9):2844-2848.). [28] 牛金龙,周激流.基于分数阶图像增强的P-M模型[J].通信技术,2010, 43(2):74-76. (NIU J L, ZHOU J L. P-M diffusion model based on fractional-order image enhancement[J]. Communications Technology, 2010, 43(2):74-76. [29] REN Z, HE C, ZHANG Q. Fractional order total variation regularization for image super-resolution[J]. Signal Processing, 2013, 93(9):2048-2421. [30] CHEN G, ZHANG J, LI D. Fractional-order total variation combined with sparsifying transforms for compressive sensing sparse image reconstruction[J]. Journal of Visual Communication and Image Representation, 2016, 38:407-422. [31] ZACHEVSKY I, ZEEVI Y Y. Single-image super resolution of natural stochastic textures based on fractional Brownian motion[J]. IEEE Transactions on Image Processing, 2014, 23(5):2096-2108. [32] WANG L P, ZHOU S B, AWUDU K. Image zooming technique based on the split Bregman iteration with fractional order variation regularization[J]. The International Arab Journal of Information Technology, 2016, 13(6A):944-950. [33] WANG L, ZHOU S, AWUDU K. Super-resolution image reconstruction method using homotopy regularization[J]. Multimedia Tools and Applications, 2016, 75(23):15993-16016. [34] PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639. [35] YOU Y-L, XU W, TANNENBAUM A, et al. Behavioral analysis of anisotropic diffusion in image processing[J]. IEEE Transactions on Image Processing, 1996, 5(11):1539-1553. [36] GUIDOTTI P, LAMBERS J V. Two new nonlinear nonlocal diffusions for noise reduction[J]. Journal of Mathematical Imaging and Vision, 2009, 33(1):25-37. [37] JANEV M, PILIPOVI ĆS, ATANACHOVIC T, et al. Fully fractional anisotropic diffusion for image denoising[J]. Mathematical and Computer Modelling, 2011, 54(1/2):729-741. [38] 尹学辉.基于分数阶PDE的图像结构保持型去噪算法研究[D].重庆:重庆大学,2015:21-99. (YIN X H. Research on fractional-order PDE based image structure-preserving denoising algorithms[D]. Chongqing:Chongqing University, 2015:21-99.). [39] ZENZO S D. A note on the gradient of a multi-image[J]. Computer Vision, Graphics, and Image Processing, 1986, 33(1):116-125. [40] FÖRSTNER W, GVLCH E. A fast operator for detection and precise location of distinct points, corners and centres of circular features[C]//Proceedings of the 1987 ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data. Interlaken, Switzerland:[s.n.], 1987:281-305. [41] WEICKERT J. Anisotropic Diffusion in Image Processing[M]. Teubner-Verlag, Stuttgart, Germany:B. G. Teubner Stuttgart, 1998:56. [42] WEICKERT J, SCHNÖRR C. A theoretical framework for convex regularizers in PDE-based computation of image motion[J]. International Journal of Computer Vision, 2001, 45(3):245-264. [43] WEICKERT J. Anisotropic diffusion filters for image processing based quality control[C]//Proceedings of the 7th European Conference on Mathematics in Industry. Teubner, Stuttgart:[s.n.], 1994:355-362. [44] LEFKIMMIATIS S, ROUSSORS A, MARAGOS P, et al. Structure tensor total variation[J]. SIAM Journal of Imaging Sciences, 2015, 8(2):1090-1122. [45] LEFKIMMIATIS S, OSHER S. Non-local structure tensor functionals for image regularization[J]. IEEE Transactions on Computational Imaging, 2015, 1(1):16-29. [46] LI H, YU Z, MAO C. Fractional differential and variational method for image fusion and super-resolution[J]. Neurocomputing, 2016, 171:138-148. [47] ZHU W, CHAN T. Image denoising using mean curvature of image surface[J]. SIAM Journal on Imaging Sciences, 2012, 5(1):1-32. [48] 张富平,周尚波,赵灿.基于分数阶偏微分方程的彩色图像去噪新算法[J].计算机应用研究,2013,30(3):946-949. (ZHANG F P, ZHOU S B, ZHAO C. Novel color image denoising method based on fractional-order partial differential equation[J]. Application Research of Computers, 2013, 30(3):946-949.). [49] REN Z, HE C, LI M. Fractional-order bidirectional diffusion for image up-sampling[J]. Journal of Electronic Imaging, 2012, 21(2):023006. [50] LIU Y, FANG Z, LI H, et al. A mixed finite element method for a time-fractional fourth-order partial differential equation[J]. Applied Mathematics and Computation, 2014, 243:703-717. [51] ATANGANA A, BALEANU D. Numerical solution of a kind of fractional parabolic equations via two difference schemes[J]. Abstract & Applied Analysis, 2013, 2013:Article ID 828764. [52] MEERSCHAERT M M, TADJERAN C. Finite difference approximations for fractional advection dispersion equations[J]. Journal of Computational and Applied Mathematics, 2004, 172(1):65-77. [53] ZHANG Y. A finite difference method for fractional partial differential equation[J]. Applied Mathematics and Computation, 2009, 215(2):524-529. [54] TADJERAN C, MEERSCHAERT M M, SCHEFFLER H-P. A second order accurate numerical approximation for the fractional diffusion equation[J]. Journal of Computational Physics, 2016, 213(1):205-213. [55] CHEN C-M, LIU F, TURNER I, et al. A Fourier method for the fractional diffusion equation describing sub-diffusion[J]. Journal of Computational Physics, 2007, 227(2):886-897. [56] YUSTE S B, ACEDO L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations[J]. SIAM Journal of on Numerical Analysis, 2005, 42(5):1862-1874. [57] AL-KHALEDA K, MOMANIB S. An approximate solution for a fractional diffusion-wave equation using the decomposition method[J]. Applied Mathematics and Computation, 2005, 165(2):473-483. [58] SAKTIVEL R, REVATHI P, REN Y. Existence of solutions for nonlinear fractional stochastic differential equations[J]. Nonlinear Analysis:Theory, Methods & Applications, 2013, 81:70-86. [59] BAYOURA B, TORRESB D F M. Existence of solution to a local fractional nonlinear differential equation[J]. Journal of Computational and Applied Mathematics, 2017, 312:127-133. [60] ZHU B, LIU L, WU Y. Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay[J/OL]. Computers and Mathematics with Applications, 2016[2016-07-16]. http://www.sciencedirect.com/science/article/pii/S0898122116300244. [61] ATANGANA A. On the stability and convergence of the time-fractional variable order telegraph equation[J]. Journal of Computational Physics, 2015,293:104-114. [62] LI F, LI Z, PI L. Variable exponent functionals in image restoration[J]. Applied Mathematics and Computation, 2010, 216(3):870-882. [63] WEI G W. Generalized Perona-Malik equation for image restoration[J]. IEEE Signal Processing Letters, 1999, 6(7):165-167. [64] TSENG C-C, PEI S-C, HSIA S-C. Computation of fractional derivatives using Fourier transform and digital FIR differentiator[J]. Signal Processing, 2000, 80(1):151-159. [65] TAI Y-W, LIU S, BROWN M S, et al. Super resolution using edge prior and single image detail synthesis[C]//CVPR 2010:Proceedings of the 2010 IEEE Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2010:2400-2407. [66] MARQUINA A, OSHER S J. Image super-resolution by TV regularization and Bregman iteration[J]. Journal of Scientific Computing, 2008, 37(3):367-382. |
[1] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
[2] | Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion [J]. Journal of Computer Applications, 2024, 44(3): 916-921. |
[3] | Yi ZHENG, Cunyi LIAO, Tianqian ZHANG, Ji WANG, Shouyin LIU. Image denoising-based cell-level RSRP estimation method for urban areas [J]. Journal of Computer Applications, 2024, 44(3): 855-862. |
[4] | Pengbo WANG, Wuyang SHAN, Jun LI, Mao TIAN, Deng ZOU, Zhanfeng FAN. Robust splicing forensic algorithm against high-intensity salt-and-pepper noise [J]. Journal of Computer Applications, 2024, 44(10): 3177-3184. |
[5] | Anyang LIU, Huaici ZHAO, Wenlong CAI, Zechao XU, Ruideng XIE. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2288-2294. |
[6] | Linkai HAN, Jiangwei YAO, Kunfeng WANG. Visible and infrared image fusion by preserving gradients and contours [J]. Journal of Computer Applications, 2023, 43(11): 3574-3578. |
[7] | HU Ziqi, XIE Kai, WEN Chang, LI Meiran, HE Jianbiao. Low dose CT image enhancement based on generative adversarial network [J]. Journal of Computer Applications, 2023, 43(1): 280-288. |
[8] | Huazhong JIN, Xiuyang ZHANG, Zhiwei YE, Wenqi ZHANG, Xiaoyu XIA. Image denoising model based on approximate U-shaped network structure [J]. Journal of Computer Applications, 2022, 42(8): 2571-2577. |
[9] | Zefang HAN, Xiong ZHANG, Hong SHANGGUAN, Xinglong HAN, Jing HAN, Gang FENG, Xueying CUI. Artifacts sensing generative adversarial network for low-dose CT denoising [J]. Journal of Computer Applications, 2022, 42(7): 2301-2310. |
[10] | WANG Haipeng, JIANG Ailian, LI Pengxiang. Newton-soft threshold iteration algorithm for robust principal component analysis [J]. Journal of Computer Applications, 2020, 40(11): 3133-3138. |
[11] | TAO Yongpeng, JING Yu, XU Cong. Image denoising algorithm based on grouped dictionaries and variational model [J]. Journal of Computer Applications, 2019, 39(2): 551-555. |
[12] | ZHANG Wenwen, HAN Yusheng. Nonlocal self-similarity based low-rank sparse image denoising [J]. Journal of Computer Applications, 2018, 38(9): 2696-2700. |
[13] | GUO Li, LIAO Yu, LI Min, YUAN Hailin, LI Jun. Image denoising model with adaptive non-local data-fidelity term and bilateral total variation [J]. Journal of Computer Applications, 2017, 37(8): 2334-2342. |
[14] | XU Su, ZHOU Yingyue. Non-local means denoising algorithm based on image segmentation [J]. Journal of Computer Applications, 2017, 37(7): 2078-2083. |
[15] | PENG Zheng, CHEN Dongfang, WANG Xiaofeng. Adaptive threshold denoising of regularized super-resolution reconstruction procedure [J]. Journal of Computer Applications, 2017, 37(7): 2084-2088. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||