[1] 张连成, 魏强, 唐秀存, 等. 基于路径与端址跳变的SDN网络主动防御技术[J]. 计算机研究与发展,2017,54(12):2761-2771. (ZHANG L C,WEI Q,TANG X C,et al. Path and port address hopping based SDN proactive defense technology[J]. Journal of Computer Research and Development, 2017, 54(12):2761-2771.) [2] 刘江, 张红旗, 杨英杰, 等. 基于主机安全状态迁移模型的动态网络防御有效性评估[J]. 电子与信息学报,2017,39(3):509-517.(LIU J,ZHANG H Q,YANG Y J,et al. Effectiveness evaluation of dynamic network defense based on host security state migration model[J]. Journal of Electronics and Information Technology, 2017,39(3):509-517.) [3] HODO E,BELLEKENS X,HAMILTON A,et al. Threat analysis of IoT networks using artificial neural network intrusion detection system[C]//Proceedings of the 2016 International Symposium on Networks,Computers and Communications. Piscataway:IEEE, 2016:1-6. [4] MONDAEEV M,ANKER T,MEYOUHAS Y. Method and apparatus for deep packet inspection for network intrusion detection:US20080031130[P]. 2013-05-21. [5] QU X,YANG L,GUO K,et al. A survey on the development of self-organizing maps for unsupervised intrusion detection[J/OL]. Mobile Networks and Applications[2019-11-10]. https://link.springer.com/article/10.1007%2Fs11036-019-01353-0. [6] CHIEN C F,HUANG Y C,HU C H. A hybrid approach of data mining and genetic algorithms for rehabilitation scheduling[J]. International Journal of Manufacturing Technology and Management, 2009,16(1/2):76-100. [7] KHALVATI L,KESHTGARY M,RIKHTEGAR N. Intrusion detection based on a novel hybrid learning approach[J]. Journal of AI and Data Mining,2018,6(1):157-162. [8] WANG W,LIU J,PITSILIS G,et al. Abstracting massive data for lightweight intrusion detection in computer networks[J]. Information Sciences,2018,433/434:417-430. [9] SULTANA N,CHILAMKURTI N,PENG W,et al. Survey on SDN based network intrusion detection system using machine learning approaches[J]. Peer-to-Peer Networking and Applications,2019,12(2):493-501. [10] 李龙杰, 于洋, 白伸伸, 等. 基于二次训练技术的入侵检测方法研究[J]. 北京理工大学学报,2017,37(12):1246-1252.(LI L J,YU Y,BAI S S,et al. Intrusion detection model based on double training technique[J]. Transactions of Beijing Institute of Technology,2017,37(12):1246-1252.) [11] GAO X,SUN Q,XU H. Multiple-rank supervised canonical correlation analysis for feature extraction,fusion and recognition[J]. Expert Systems with Applications,2017,84:171-185. [12] 刘雪娟, 袁家斌, 操凤萍. 云计算环境下面向数据分布的Kmeans聚类算法[J]. 小型微型计算机系统,2017,38(4):712-715. (LIU X J,YUAN J B,CAO F P. Data distribution K-means clustering for cloud computing[J]. Journal of Chinese Computer Systems,2017,38(4):712-715.) [13] XU T,CHANG H D,LIU G,et al. Hierarchical K-means method for clustering large-scale advanced metering infrastructure data[J]. IEEE Transactions on Power Delivery, 2017, 32(2):609-616. [14] PARK S,KIM J. A study on risk index to analyze the impact of port scan and to detect slow port scan in network intrusion detection[J]. Advanced Science Letters,2017,23(10):10329-10336. [15] KORITSAS S,HAGILIASSIS N,CUZZILLO C. The outcomes and impact scale-revised:the psychometric properties of a scale assessing the impact of service provision[J]. Journal of Intellectual Disability Research,2017,61(5):450-460. [16] 张冰涛, 王小鹏, 王履程, 等. 基于图论的MANET入侵检测方法[J]. 电子与信息学报,2018,40(6):1446-1452.(ZHANG B T,WANG X P,WANG L C,et al. Intrusion detection method for MANET based on graph theory[J]. Journal of Electronics and Information Technology,2018,40(6):1446-1452.) [17] KHROMYKH S V,TSYGANKOV A A,BURMAKINA G N,et al. Mantle-crust interaction in petrogenesis of the gabbro-granite association in the Preobrazhenka intrusion,Eastern Kazakhstan[J]. Petrology,2018,26(4):368-388. [18] 叶子维, 郭渊博, 王宸东, 等. 攻击图技术应用研究综述[J]. 通信学报,2017,38(11):121-132.(YE Z W,GUO Y B,WANG C D,et al. Survey on application of attack graph technology[J]. Journal on Communications,2017,38(11):121-132.) [19] SHI W,LU C,YE Y,et al. Assessment of the impact of sea-level rise on steady-state seawater intrusion in a layered coastal aquifer[J]. Journal of Hydrology,2018,563:851-862. |