[1] 王元卓, 靳小龙, 程学旗. 网络大数据:现状与展望[J]. 计算机学报,2013,36(6):1125-1138.(WANG Y Z,JIN X L,CHENG X Q. Network big data:present and future[J]. Chinese Journal of Computers,2013,36(6):1125-1138.) [2] WU X,ZHU X,WU G,et al. Data mining with big data[J]. IEEE Transactions on Knowledge and Data Engineering,2014,26(1):97-107. [3] MORENO M V,TERROSO-SÁENZ F,GONZÁLEZ-VIDAL A,et al. Applicability of big data techniques to smart cities deployments[J]. IEEE Transactions on Industrial Informatics,2017,13(2):800-809. [4] EDSTROM J,CHEN D,GONG Y,et al. Data-pattern enabled selfrecovery low-power storage system for big video data[J]. IEEE Transactions on Big Data,2019,5(1):95-105. [5] AKTER S,WAMBA S F. Big data analytics in E-commerce:a systematic review and agenda for future research[J]. Electronic Markets,2016,26(2):173-194. [6] WU X,ZENG X,FANG B. An efficient energy-aware and gametheory-based clustering protocol for wireless sensor networks[J]. IEICE Transactions on Communications, 2018, E101-B(3):709-722. [7] KRAWCZYK B,MINKU L L,GAMA J,et al. Ensemble learning for data stream analysis:a survey[J]. Information Fusion,2017, 37:132-156. [8] 张宇, 包研科, 邵良杉, 等. 面向分布式数据流大数据分类的多变量决策树[J]. 自动化学报,2018,44(6):1115-1127. (ZHANG Y,BAO Y K,SHAO L S,et al. A multivariate decision tree for big data classification of distributed data streams[J]. Acta Automatica Sinica,2018,44(6):1115-1127.) [9] GUERRIERI A,MONTRESOR A. DS-means:distributed data stream clustering[C]//Proceedings of the 2012 European Conference on Parallel Processing,LNCS 7484. Berlin:Springer, 2012:260-271. [10] FUERTES W,CARRERA D,VILLACÍS C,et al. Distributed system as internet of things for a new low-cost,air pollution wireless monitoring on real time[C]//Proceedings of the IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications. Piscataway:IEEE,2016:58-67. [11] MASUD M M,WOOLAM C,GAO J,et al. Facing the reality of data stream classification:coping with scarcity of labeled data[J]. Knowledge and Information Systems,2012,33(1):213-244. [12] WANG E T, CHEN A L P. Mining frequent itemsets over distributed data streams by continuously maintaining a global synopsis[J]. Data Mining and Knowledge Discovery,2011,23(2):252-299. [13] 毛国君, 胡殿军, 谢松燕. 基于分布式数据流的大数据分类模型和算法[J]. 计算机学报,2017,40(1):161-175.(MAO G J, HU D J,XIE S Y. Models and algorithms for classifying big data based on distributed data streams[J]. Chinese Journal of Computers,2017,40(1):161-175.) [14] WANG S,MINKU L L,YAO X. A systematic study of online class imbalance learning with concept drift[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(10):4802-4821. [15] 朱欣, 赵雷, 杨季文. 基于CVFDT的网络流量分类方法[J]. 计算机工程,2011,37(12):101-103.(ZHU X,ZHAO L,YANG J W. Network traffic classification method based on conceptadapting very fast decision tree[J]. Computer Engineering,2011, 37(12):101-103.) [16] BARROS R S M,CABRAL D R L,GONÇALVES P M,et al. RDDM:reactive drift detection method[J]. Expert Systems with Applications,2017,90:344-355. [17] BIFET A,GAVALDÀ R. Learning from time-changing data with adaptive windowing[C]//Proceedings of the 2007 SIAM International Conference on Data Mining. Philadelphia, PA:SIAM,2007:443-448. [18] 翟婷婷, 高阳, 朱俊武. 面向流数据分类的在线学习综述[J]. 软件学报,2020,31(4):912-931.(ZHAI T T,GAO Y,ZHU J W. Survey of online learning algorithms for streaming data classification[J]. Journal of software,2020,31(4):912-931.) [19] STREET W N,KIM Y. A Streaming Ensemble Algorithm(SEA) for large-scale classification[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2001:377-382. [20] KOLTER J Z,MALOOF M A. Dynamic weighted majority:a new ensemble method for tracking concept drift[C]//Proceedings of the 3rd IEEE International Conference on Data Mining. Piscataway:IEEE,2003:123-130. [21] 郭虎升, 张爱娟, 王文剑. 基于在线性能测试的概念漂移检测方法[J]. 软件学报,2020,31(4):932-947.(GUO H S, ZHANG A J,WANG W J. Concept drift detection method based on online performance test[J]. Journal of Software,2020,31(4):932-947.) [22] SHAN J,ZHANG H,LIU W,et al. Online active learning ensemble framework for drifted data streams[J]. IEEE Transactions on Neural Networks and Learning Systems,2019,30(2):486-498. [23] WEBB G I,HYDE R,CAO H,et al. Characterizing concept drift[J]. Data Mining and Knowledge Discovery,2016,30(4):964-994. [24] GAMA J,ŽLIOBAITĖ I,BIFET A,et al. A survey on concept drift adaptation[J]. ACM Computing Surveys,2014,46(4):No. 44. [25] ŽLIOBAITĖ I. Learning under concept drift:an overview[EB/OL].[2020-07-22]. https://arxiv.org/pdf/1010.4784.pdf. [26] 包研科, 赵凤华. 多标度数据轮廓相似性的度量公理与计算[J]. 辽宁工程技术大学学报(自然科学版),2012,31(5):797-800. (BAO Y K,ZHAO F H. Measure axiom of outline similarity of multi-scale data and its calculation[J]. Journal of Liaoning Technical University(Natural Science),2012,31(5):797-800.) [27] HRUSHOVSKI E. Computing the Galois group of a linear differential equation[J]. Banach Center Publications,2002,58:97-138. [28] KRAWCZYK B, CANO A. Online ensemble learning with abstaining classifiers for drifting and noisy data streams[J]. Applied Soft Computing,2018,68:677-692. [29] BIFET A,HOLMES G,KIRKBY R,et al. MOA:massive online analysis[J]. Journal of Machine Learning Research,2010,11:1601-1604. |