| 1 | 
																						 
											朱扬勇,孙婧.推荐系统研究进展[J].计算机科学与探索, 2015, 9(5): 513-525. 10.3778/j.issn.1673-9418.1412023
																						 | 
										
																													
																							 | 
																						 
											ZHU Y Y, SUN J. Recommender system: up to now[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(5): 513-525. 10.3778/j.issn.1673-9418.1412023
																						 | 
										
																													
																							| 2 | 
																						 
											黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报, 2018, 41(7): 1619-1647. 10.11897/SP.J.1016.2018.01619
																						 | 
										
																													
																							 | 
																						 
											HUANG L W, JIANG B T, LYU S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647. 10.11897/SP.J.1016.2018.01619
																						 | 
										
																													
																							| 3 | 
																						 
											邓凯,黄加进,秦进.基于物品的统一推荐模型[J].计算机应用, 2020, 40(2): 530-534. 10.11772/j.issn.1001-9081.2019101791
																						 | 
										
																													
																							 | 
																						 
											DENG K, HUANG J J, QIN J. Item-based unified recommendation model[J]. Journal of Computer Applications, 2020, 40(2): 530-534. 10.11772/j.issn.1001-9081.2019101791
																						 | 
										
																													
																							| 4 | 
																						 
											KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. 10.1109/mc.2009.263
																						 | 
										
																													
																							| 5 | 
																						 
											LIU H T, WU F Z, WANG W J, et al. NRPA: neural recommendation with personalized attention [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 1233-1236. 10.1145/3331184.3331371
																						 | 
										
																													
																							| 6 | 
																						 
											YUN S, KIM R, KO M, et al. SAIN: self-attentive integration network for recommendation [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 1205-1208. 10.1145/3331184.3331342
																						 | 
										
																													
																							| 7 | 
																						 
											CHEN J W, ZHUANG F Z, HONG X, et al. Attention-driven factor model for explainable personalized recommendation [C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 909-912. 10.1145/3209978.3210083
																						 | 
										
																													
																							| 8 | 
																						 
											SHI S Y, ZHANG M, LIU Y Q, et al. Attention-based adaptive model to unify warm and cold starts recommendation [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 127-136. 10.1145/3269206.3271710
																						 | 
										
																													
																							| 9 | 
																						 
											ZHANG Y F, LAI G K, ZHANG M, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis [C]// Proceedings of 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2014: 83-92. 10.1145/2600428.2609579
																						 | 
										
																													
																							| 10 | 
																						 
											SALAKHUTDINOV R, MINH A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo [C]// Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008: 880-887. 10.1145/1390156.1390267
																						 | 
										
																													
																							| 11 | 
																						 
											QIAN F L, HUANG Y F, LI J H, et al. HGAR: hybrid granular algorithm for rating recommendation [C]// Proceedings of the 2020 International Joint Conference on Rough Sets, LNCS12179. Cham: Springer, 2020: 267-279.
																						 | 
										
																													
																							| 12 | 
																						 
											ZHANG Q G, CAO L B, ZHU C Z, et al. CoupledCF: learning explicit and implicit user-item couplings in recommendation for deep collaborative filtering [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. [S.l.]: IJCAI Organization, 2018: 3662-3668. 10.24963/ijcai.2018/509
																						 | 
										
																													
																							| 13 | 
																						 
											LIU F, CHENG Z Y, ZHU L, et al. A2-GCN: an attribute-aware attentive GCN model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020(Early Access): 1-1. 10.1109/TKDE.2020.3040772
																						 | 
										
																													
																							| 14 | 
																						 
											RENDLE S. Factorization machines [C]// Proceedings of the 2010 IEEE International Conference on Data Mining. Piscataway: IEEE, 2010: 995-1000. 10.1109/icdm.2010.127
																						 | 
										
																													
																							| 15 | 
																						 
											CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems [C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 7-10. 10.1145/2988450.2988454
																						 | 
										
																													
																							| 16 | 
																						 
											HE X N, CHUA T S. Neural factorization machines for sparse predictive analytics [C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 355-364. 10.1145/3077136.3080777
																						 | 
										
																													
																							| 17 | 
																						 
											ZHANG T T, ZHAO P P, LIU Y C, et al. Feature-level deeper self-attention network for sequential recommendation [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. [S.l.]: IJCAI Organization, 2019: 4320-4326. 10.24963/ijcai.2019/600
																						 | 
										
																													
																							| 18 | 
																						 
											LIAN J X, ZHOU X H, ZHANG F Z, et al. xDeepFM: combining explicit and implicit feature interactions for recommender systems [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1754-1763. 10.1145/3219819.3220023
																						 | 
										
																													
																							| 19 | 
																						 
											XIN X, CHEN B, HE X N, et al. CFM: convolutional factorization machines for context-aware recommendation [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. [S.l.]: IJCAI Organization, 2019: 3926-3932. 10.24963/ijcai.2019/545
																						 | 
										
																													
																							| 20 | 
																						 
											VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. 10.1016/s0262-4079(17)32358-8
																						 | 
										
																													
																							| 21 | 
																						 
											HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering [C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. 10.1145/3038912.3052569
																						 | 
										
																													
																							| 22 | 
																						 
											BAI P Z, GE Y, LIU F L, et al. Joint interaction with context operation for collaborative filtering[J]. Pattern Recognition, 2019, 88: 729-738. 10.1016/j.patcog.2018.12.003
																						 | 
										
																													
																							| 23 | 
																						 
											WANG X, WANG R J, SHI C, et al. Multi-component graph convolutional collaborative filtering [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 6267-6274. 10.1609/aaai.v34i04.6094
																						 |