Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (4): 1284-1291.DOI: 10.11772/j.issn.1001-9081.2021071279
Special Issue: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• The 36 CCF National Conference of Computer Applications (CCF NCCA 2020) • Previous Articles Next Articles
Qianzhou CAI1, Bochuan ZHENG2(), Xiangyin ZENG2, Jin HOU3
Received:
2021-07-16
Revised:
2021-08-23
Accepted:
2021-08-27
Online:
2022-04-28
Published:
2022-04-10
Contact:
Bochuan ZHENG
About author:
CAI Qianzhou, born in 1996, M. S. candidate. His research interests include deep learning, object detection.Supported by:
通讯作者:
郑伯川
作者简介:
蔡前舟(1996—),男,四川通江人,硕士研究生,CCF会员,主要研究方向:深度学习、目标检测基金资助:
CLC Number:
Qianzhou CAI, Bochuan ZHENG, Xiangyin ZENG, Jin HOU. Wildlife object detection combined with solving method of long-tail data[J]. Journal of Computer Applications, 2022, 42(4): 1284-1291.
蔡前舟, 郑伯川, 曾祥银, 侯金. 结合长尾数据解决方法的野生动物目标检测[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1284-1291.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071279
阶段 | 方法 | CE loss | Focal loss | ||
---|---|---|---|---|---|
一阶段 | 无加权 | 57.17 | 56.02 | 55.43 | 55.83 |
本文加权方法一 | 58.40 | 58.33 | 57.88 | 57.45 | |
本文加权方法二 | 59.12 | 59.80 | 59.10 | 58.01 | |
二阶段 | 本文加权方法一 | 59.70 | 59.59 | 59.41 | 58.19 |
本文加权方法二 | 60.47 | 61.18 | 60.68 | 59.48 |
Tab. 1 mAP comparison of proposed methods and no-weighting method
阶段 | 方法 | CE loss | Focal loss | ||
---|---|---|---|---|---|
一阶段 | 无加权 | 57.17 | 56.02 | 55.43 | 55.83 |
本文加权方法一 | 58.40 | 58.33 | 57.88 | 57.45 | |
本文加权方法二 | 59.12 | 59.80 | 59.10 | 58.01 | |
二阶段 | 本文加权方法一 | 59.70 | 59.59 | 59.41 | 58.19 |
本文加权方法二 | 60.47 | 61.18 | 60.68 | 59.48 |
方法 | mAP | 方法 | mAP |
---|---|---|---|
YOLOv4-Tiny(无加权) | 57.17 | 有效样本加权 | 59.04 |
逆序加权 | 59.01 | LDAMLoss | 60.12 |
逆序平方根加权 | 58.92 | 本文加权方法二 | 61.18 |
Tab. 2 mAP comparison of no-weighting method and different weighting methods
方法 | mAP | 方法 | mAP |
---|---|---|---|
YOLOv4-Tiny(无加权) | 57.17 | 有效样本加权 | 59.04 |
逆序加权 | 59.01 | LDAMLoss | 60.12 |
逆序平方根加权 | 58.92 | 本文加权方法二 | 61.18 |
1 | NGUYEN H, MACLAGAN S J, NGUYEN T D, et al. Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring[C]// Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics. Piscataway: IEEE, 2017:40-49. 10.1109/dsaa.2017.31 |
2 | CHEN G B, HAN T X, HE Z H, et al. Deep convolutional neural network based species recognition for wild animal monitoring[C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014:858-862. 10.1109/icip.2014.7025172 |
3 | GOMEZ VILLA A, SALAZAR A, VARGAS F. Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks[J]. Ecological Informatics, 2017, 41:24-32. 10.1016/j.ecoinf.2017.07.004 |
4 | ZHU C B, LI T H, LI G. Towards automatic wild animal detection in low quality camera-trap images using two-channeled perceiving residual pyramid networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017:2860-2864. 10.1109/iccvw.2017.337 |
5 | OUYANG W L, WANG X G, ZHANG C, et al. Factors in finetuning deep model for object detection with long-tail distribution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:864-873. 10.1109/cvpr.2016.100 |
6 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceeding of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014:740-755. |
7 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceeding of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. 10.1109/cvpr.2009.5206848 |
8 | TORRALBA A, FERGUS R, FREEMAN W T. 80 million tiny images: a large data set for nonparametric object and scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11):1958-1970. 10.1109/tpami.2008.128 |
9 | POUYANFAR S, TAO Y D, MOHAN A, et al. Dynamic sampling in convolutional neural networks for imbalanced data classification[C]// Proceeding of the 2018 IEEE Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2018: 112-117. 10.1109/mipr.2018.00027 |
10 | HE H B, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1263-1284. 10.1109/tkde.2008.239 |
11 | 王俊红,闫家荣. 基于欠采样和代价敏感的不平衡数据分类算法[J]. 计算机应用, 2021, 41(1):48-52. |
WANG J H, YAN J R. Classification algorithm based on undersampling and cost-sensitiveness for unbalanced data[J]. Journal of Computer Applications, 2021, 41(1):48-52. | |
12 | HUANG C, LI Y N, LOY C C, et al. Learning deep representation for imbalanced classification[C]// Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:5375-5384. 10.1109/cvpr.2016.580 |
13 | CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]// Proceeding of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:9260-9269. 10.1109/cvpr.2019.00949 |
14 | CAO K D, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 1567-1578. |
15 | 姚佳奇,徐正国,燕继坤,等. WPLoss:面向类别不平衡数据的加权成对损失[J]. 计算机应用研究, 2021, 38(3):702-704, 709. |
YAO J Q, XU Z G, YAN J K, et al. WPLoss: weighted pairwise loss for class-imbalanced datasets[J]. Application Research of Computers, 2021, 38(3):702-704, 709. | |
16 | XIANG L Y, DING G G, HAN J G. Learning from multiple experts: self-paced knowledge distillation for long-tailed classification[C]// Proceeding of the 2020 European Conference on Computer Vision, LNCS 12350. Cham: Springer, 2020:247-263. |
17 | ZHANG S Y, CHEN C, HU X Y, et al. Balanced knowledge distillation for long-tailed learning[EB/OL]. (2021-04-21) [2021-05-13].. |
18 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:779-788. 10.1109/cvpr.2016.91 |
19 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:6517-6525. 10.1109/cvpr.2017.690 |
20 | REDMON R, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2021-05-13].. |
21 | JIANG Z C, ZHAO L Q, LI S Y, et al. Real-time object detection method based on improved YOLOv4-tiny[EB/OL]. (2020-12-02) [2021-05-13].. |
22 | WANG Y X, RAMANAN D, HEBERT M. Learning to model the tail[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 7032-7042. 10.1109/cvpr.2017.323 |
23 | CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16:321-357. 10.1613/jair.953 |
24 | HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]// Proceedings of the 2005 International Conference on Intelligent Computing, LNCS 3644. Berlin: Springer, 2005:878-887. |
25 | BUNKHUMPORNPAT C, SINAPIROMSARAN K, LURSINSAP C. Safe-Level-SMOTE: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem[C]// Proceedings of the 2009 Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2009: 475-482. 10.1007/978-3-642-01307-2_43 |
26 | LIU X Y, WU J X, ZHOU Z H. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(2):539-550. 10.1109/tsmcb.2008.2007853 |
27 | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013:3111-3119. |
28 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceeding of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2999-3007. 10.1109/iccv.2017.324 |
29 | LIU Z W, MIAO Z Q, ZHAN X H, et al. Large-scale long-tailed recognition in an open world[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2532-2541. 10.1109/cvpr.2019.00264 |
30 | KANG B Y, XIE S N, ROHRBACH M, et al. Decoupling representation and classifier for long-tailed recognition[EB/OL]. (2020-02-19) [2021-05-13].. |
31 | ZHOU B Y, CUI Q, WEI X S, et al. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition[C]// Proceeding of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:9716-9725. 10.1109/cvpr42600.2020.00974 |
32 | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]// Proceeding of the 34th AAAI Conference on Artificial intelligence. Palo Alto, CA: AAAI Press, 2020:12993-13000. 10.1609/aaai.v34i07.6999 |
33 | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// Proceeding of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:658-666. 10.1109/cvpr.2019.00075 |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
[3] | Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning [J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. |
[4] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[5] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[6] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[7] | Yaping DENG, Yingjiang LI. Review of YOLO algorithm and its applications to object detection in autonomous driving scenes [J]. Journal of Computer Applications, 2024, 44(6): 1949-1958. |
[8] | Huantong GENG, Zhenyu LIU, Jun JIANG, Zichen FAN, Jiaxing LI. Embedded road crack detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(5): 1613-1618. |
[9] | Xiaogang SONG, Dongdong ZHANG, Pengfei ZHANG, Li LIANG, Xinhong HEI. Real-time object detection algorithm for complex construction environments [J]. Journal of Computer Applications, 2024, 44(5): 1605-1612. |
[10] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[11] | Zongyu LI, Siwei QIANG, Xiaobo GUO, Zhenfeng ZHU. Re-weighted adversarial variational autoencoder and its application in industrial causal effect estimation [J]. Journal of Computer Applications, 2024, 44(4): 1099-1106. |
[12] | Wei WANG, Chunhui ZHAO, Xinyao TANG, Liugang XI. 3D vehicle detection with adaptive horizon line constraints [J]. Journal of Computer Applications, 2024, 44(3): 909-915. |
[13] | Xinye LI, Yening HOU, Yinghui KONG, Zhiqi YAN. Few-shot object detection combining feature fusion and enhanced attention [J]. Journal of Computer Applications, 2024, 44(3): 745-751. |
[14] | Yuqiu LI, Liping HOU, Jian XUE, Ke LYU, Yong WANG. Remote sensing image recommendation method based on content interpretation [J]. Journal of Computer Applications, 2024, 44(3): 722-731. |
[15] | Keyi FU, Gaocai WANG, Man WU. Few-shot object detection method based on improved region proposal network and feature aggregation [J]. Journal of Computer Applications, 2024, 44(12): 3790-3797. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||