Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (9): 2969-2974.DOI: 10.11772/j.issn.1001-9081.2021071197
• Frontier and comprehensive applications • Previous Articles
Jinghu LI1, Qianguo XING2,3(), Xiangyang ZHENG2, Lin LI2, Lili WANG1
Received:
2021-07-09
Revised:
2021-09-14
Accepted:
2021-09-14
Online:
2021-09-30
Published:
2022-09-10
Contact:
Qianguo XING
About author:
LI Jinghu, born in 1995, M. S. candidate. His research interests include image processing, pattern recognition.Supported by:
李敬虎1, 邢前国2,3(), 郑向阳2, 李琳2, 王丽丽1
通讯作者:
邢前国
作者简介:
李敬虎(1995—),男,山东德州人,硕士研究生,主要研究方向:图像处理、模式识别;基金资助:
CLC Number:
Jinghu LI, Qianguo XING, Xiangyang ZHENG, Lin LI, Lili WANG. Noctiluca scintillans red tide extraction method from UAV images based on deep learning[J]. Journal of Computer Applications, 2022, 42(9): 2969-2974.
李敬虎, 邢前国, 郑向阳, 李琳, 王丽丽. 基于深度学习的无人机影像夜光藻赤潮提取方法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2969-2974.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071197
方法 | OA/% | F1评分 | Kappa |
---|---|---|---|
KNN | 80.02 | 0.849 6 | 0.798 0 |
RF | 81.85 | 0.865 1 | 0.816 5 |
SVM | 88.69 | 0.891 3 | 0.842 7 |
本文方法 | 94.63 | 0.9552 | 0.9496 |
Tab. 1 Comparison of evaluation indexes of machine learning methods on Noctiluca scintillans red tide extraction
方法 | OA/% | F1评分 | Kappa |
---|---|---|---|
KNN | 80.02 | 0.849 6 | 0.798 0 |
RF | 81.85 | 0.865 1 | 0.816 5 |
SVM | 88.69 | 0.891 3 | 0.842 7 |
本文方法 | 94.63 | 0.9552 | 0.9496 |
方法 | OA/% | F1评分 | Kappa |
---|---|---|---|
PSPNet | 84.64 | 0.870 7 | 0.712 8 |
SegNet | 86.28 | 0.894 5 | 0.867 5 |
U-Net | 80.03 | 0.795 2 | 0.695 7 |
本文方法 | 94.63 | 0.9552 | 0.9496 |
Tab. 2 Comparison of evaluation indexes of semantic segmentation networks on Noctiluca scintillans red tide extraction
方法 | OA/% | F1评分 | Kappa |
---|---|---|---|
PSPNet | 84.64 | 0.870 7 | 0.712 8 |
SegNet | 86.28 | 0.894 5 | 0.867 5 |
U-Net | 80.03 | 0.795 2 | 0.695 7 |
本文方法 | 94.63 | 0.9552 | 0.9496 |
1 | WELLS M L, TRAINER V L, SMAYDA T J, et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future[J]. Harmful Algae, 2015, 49: 68-93. 10.1016/j.hal.2015.07.009 |
2 | ANDERSON D M. Toxic algal blooms and red tides: a global perspective[M]// OKAICHI T, ANDERSON D M, NEMOTO T. Red Tides: Biology, Environmental Science and Toxicology. New York: Elsevier Science, 1989: 11-16. |
3 | ANDERSON D M. Approaches to monitoring, control and management of Harmful Algal Blooms (HABs)[J]. Ocean and Coastal Management, 2009, 52(7): 342-347. 10.1016/j.ocecoaman.2009.04.006 |
4 | STUMPF R P, TOMLINSON M C, CALKINS J A, et al. Skill assessment for an operational algal bloom forecast system[J]. Journal of Marine Systems, 2009, 76(1/2): 151-161. 10.1016/j.jmarsys.2008.05.016 |
5 | McGILLICUDDY D J, Jr. Models of harmful algal blooms: conceptual, empirical, and numerical approaches[J]. Journal of Marine Systems, 2010, 83(3/4): 105-107. 10.1016/j.jmarsys.2010.06.008 |
6 | 孟若琳,邢前国. 基于可见光的海上船舶油井平台遥感检测[J]. 计算机应用, 2013, 33(3): 708-711. 10.3724/sp.j.1087.2013.00708 |
MENG R L, XING Q G. Detection of offshore ship and well platform based on optical remote sensing images[J]. Journal of Computer Applications, 2013, 33(3): 708-711. 10.3724/sp.j.1087.2013.00708 | |
7 | CHOI J K, MIN J E, NOH J H, et al. Harmful Algal Bloom (HAB) in the East Sea identified by the Geostationary Ocean Color Imager (GOCI)[J]. Harmful Algae, 2014, 39: 295-302. 10.1016/j.hal.2014.08.010 |
8 | LOU X L, HU C M. Diurnal changes of a harmful algal bloom in the East China Sea: observations from GOCI[J]. Remote Sensing of Environment, 2014, 140: 562-572. 10.1016/j.rse.2013.09.031 |
9 | LEE M S, PARK K A, MICHELI F. Derivation of red tide index and density using Geostationary Ocean Color Imager (GOCI) data[J]. Remote Sensing, 2021, 13(2): No.298. 10.3390/rs13020298 |
10 | CARDER K L, STEWARD R G. A remote sensing reflectance model of a red tide dinoflagellate off west Florida[J]. Limnology and Oceanography, 1985, 30(2): 286-298. 10.4319/lo.1985.30.2.0286 |
11 | 贾鹤鸣,郎春博,姜子超. 基于轻量级卷积神经网络的植物叶片病害识别方法[J]. 计算机应用, 2021, 41(6): 1812-1819. 10.11772/j.issn.1001-9081.2020091471 |
JIA H M, LANG C B, JIANG Z C. Plant leaf disease recognition method based on lightweight convolutional neural network[J]. Journal of Computer Applications, 2021, 41(6): 1812-1819. 10.11772/j.issn.1001-9081.2020091471 | |
12 | 董永峰,仉长涛,汪鹏,等. 基于深度学习的光学遥感图像飞机检测算法[J]. 激光与光电子学进展, 2020, 57(4): No.041007. 10.3788/lop57.041007 |
DONG Y F, ZHANG C T, WANG P, et al. Airplane detection of optical remote sensing images based on deep learning[J]. Laser & Optoelectronics Progress, 2020, 57(4): No.041007. 10.3788/lop57.041007 | |
13 | KIM S M, SHIN J, BAEK S, et al. U-Net convolutional neural network model for deep red tide learning using GOCI[J]. Journal of Coastal Research, 2019, 90(sp1): 302-309. 10.2112/si90-038.1 |
14 | LEE M S, PARK K A, CHAE J, et al. Red tide detection using deep learning and high-spatial resolution optical satellite imagery[J]. International Journal of Remote Sensing, 2020, 41(15): 5838-5860. 10.1080/01431161.2019.1706011 |
15 | HASSAN M A, YANG M J, FU L P, et al. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat[J]. Plant Methods, 2019, 15: No.37. 10.1186/s13007-019-0419-7 |
16 | CHENG K H, CHAN S N, LEE J H W. Remote sensing of coastal algal blooms using Unmanned Aerial Vehicles (UAVs)[J]. Marine Pollution Bulletin, 2020, 152: No.110889. 10.1016/j.marpolbul.2020.110889 |
17 | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. 10.1109/tmi.2019.2959609 |
18 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-08-24].. |
19 | TOMPSON J, GOROSHIN R, JAIN A, et al. Efficient object localization using convolutional networks[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 648-656. 10.1109/cvpr.2015.7298664 |
20 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. 10.1109/cvpr.2009.5206848 |
21 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
22 | BERMAN M, TRIKI A R, BLASCHKO M B. The Lovász-Softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4413-4421. 10.1109/cvpr.2018.00464 |
23 | BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. 10.1023/a:1009715923555 |
24 | ALTMAN N S. An introduction to kernel and nearest-neighbor nonparametric regression[J]. The American Statistician, 1992, 46(3): 175-185. 10.1080/00031305.1992.10475879 |
25 | HO T K. Random decision forests[C]// Proceedings of 3rd International Conference on Document Analysis and Recognition. Piscataway: IEEE, 1995: 278-282. 10.1109/icdar.1995.598929 |
26 | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. 10.1109/cvpr.2017.660 |
27 | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. 10.1109/tpami.2016.2644615 |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Lingxia MU, Zhengjun ZHOU, Ban WANG, Youmin ZHANG, Xianghong XUE, Kaikai NING. Formation obstacle-avoidance and reconfiguration method for multiple UAVs [J]. Journal of Computer Applications, 2024, 44(9): 2938-2946. |
[7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[8] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[9] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[10] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[11] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[12] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[13] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[14] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[15] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||