Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1811-1817.DOI: 10.11772/j.issn.1001-9081.2022050754
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Ke FANG, Rong LIU(), Chiyu WEI, Xinyue ZHANG, Yang LIU
Received:
2022-05-27
Revised:
2022-09-19
Accepted:
2022-10-08
Online:
2023-06-08
Published:
2023-06-10
Contact:
Rong LIU
About author:
FANG Ke, born in 1999, M. S. candidate. His research interests include deep learning, object detection.Supported by:
通讯作者:
刘蓉
作者简介:
方可(1999—),男,河南周口人,硕士研究生,主要研究方向:深度学习、目标检测基金资助:
CLC Number:
Ke FANG, Rong LIU, Chiyu WEI, Xinyue ZHANG, Yang LIU. Pedestrian fall detection algorithm in complex scenes[J]. Journal of Computer Applications, 2023, 43(6): 1811-1817.
方可, 刘蓉, 魏驰宇, 张心月, 刘杨. 复杂场景下的行人跌倒检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1811-1817.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022050754
实验环境 | 版本 |
---|---|
操作系统 | Linux |
GPU | Tesla P100-PCIE-16GB |
CUDA | 11.0 |
CUDNN | 7.6.5 |
深度学习框架 | PyTorch 1.7.0 |
平台编译器 | Python 3.7.9 |
Tab. 1 Experimental environment
实验环境 | 版本 |
---|---|
操作系统 | Linux |
GPU | Tesla P100-PCIE-16GB |
CUDA | 11.0 |
CUDNN | 7.6.5 |
深度学习框架 | PyTorch 1.7.0 |
平台编译器 | Python 3.7.9 |
算法 | 骨干网络 | mAP/% | 参数量/107 | 计算量/1011 |
---|---|---|---|---|
Faster R-CNN[ | ResNet50 | 81.3 | 4.114 | 2.066 8 |
Mask R-CNN[ | ResNet50 | 81.8 | 4.375 | 2.581 4 |
YOLOv3[ | Darknet53 | 80.3 | 6.152 | 1.938 5 |
FCOS[ | ResNet50 | 75.8 | 3.189 | 2.014 6 |
本文算法 | PVT | 82.2 | 3.755 | 1.929 6 |
Tab. 2 Comparison of experimental results
算法 | 骨干网络 | mAP/% | 参数量/107 | 计算量/1011 |
---|---|---|---|---|
Faster R-CNN[ | ResNet50 | 81.3 | 4.114 | 2.066 8 |
Mask R-CNN[ | ResNet50 | 81.8 | 4.375 | 2.581 4 |
YOLOv3[ | Darknet53 | 80.3 | 6.152 | 1.938 5 |
FCOS[ | ResNet50 | 75.8 | 3.189 | 2.014 6 |
本文算法 | PVT | 82.2 | 3.755 | 1.929 6 |
分组序号 | PVT | DRFPN | DIoU | mAP/% |
---|---|---|---|---|
1 | × | × | × | 75.8 |
2 | √ | × | × | 79.8 |
3 | √ | × | √ | 81.5 |
4 | √ | √ | √ | 82.2 |
Tab. 3 Ablation experiment results
分组序号 | PVT | DRFPN | DIoU | mAP/% |
---|---|---|---|---|
1 | × | × | × | 75.8 |
2 | √ | × | × | 79.8 |
3 | √ | × | √ | 81.5 |
4 | √ | √ | √ | 82.2 |
1 | 宁吉喆. 第七次全国人口普查主要数据情况[J]. 中国统计, 2021(5): 4-5. 10.18356/9789210058025c044 |
NING J Z. Main data of the seventh National Census[J]. China Statistics, 2021(5): 4-5. 10.18356/9789210058025c044 | |
2 | 高茂龙,宋岳涛. 中国老年人跌倒发生率meta分析[J]. 北京医学, 2014, 36(10):796-798. |
GAO M L, SONG Y T. Meta-analysis of the prevalence of fall in elderly in China[J]. Beijing Medical Journal, 2014, 36(10): 796-798. | |
3 | 张庆来,张林. 老年人跌倒的研究进展[J]. 中国老年学杂志, 2016, 36(1):248-249. 10.3969/j.issn.1005-9202.2016.01.112 |
ZHANG Q L, ZHANG L. Advances in falls in the elderly[J]. Chinese Journal of Gerontology, 2016, 36(1):248-249. 10.3969/j.issn.1005-9202.2016.01.112 | |
4 | MUBASHIR M, SHAO L, SEED L. A survey on fall detection: principles and approaches[J]. Neurocomputing, 2013, 100: 144-152. 10.1016/j.neucom.2011.09.037 |
5 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015,1:91-99. |
6 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
7 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
8 | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. (2019-04-25) [2022-04-07].. 10.5260/chara.21.2.8 |
9 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635. 10.1109/iccv.2019.00972 |
10 | FENG Q, GAO C Q, WANG L, et al. Spatio-temporal fall event detection in complex scenes using attention guided LSTM[J]. Pattern Recognition Letters, 2020, 130: 242-249. 10.1016/j.patrec.2018.08.031 |
11 | REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2022-04-07].. 10.1109/cvpr.2017.690 |
12 | 朱艳,张亚萍,利曙生,等. 基于深度视觉传感器和卷积神经网络的跌倒检测算法[J]. 光学技术, 2021, 47(1):56-61. |
ZHU Y, ZHANG Y P, LI S S, et al. Fall detection algorithm based on depth vision sensor and neural network[J]. Optical Technique, 2021, 47(1):56-61. | |
13 | CHEN Y, LI W T, WANG L, et al. Vision-based fall event detection in complex background using attention guided Bi-directional LSTM [J]. IEEE Access, 2020, 8: 161337-161348. 10.1109/access.2020.3021795 |
14 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2980-2988. 10.1109/iccv.2017.322 |
15 | 马露,裴伟,朱永英,等. 基于深度学习的跌倒行为识别[J]. 计算机科学, 2019, 46(9):106-112. 10.11896/j.issn.1002-137X.2019.09.014 |
MA L, PEI W, ZHU Y Y, et al. Fall action recognition based on deep learning [J]. Computer Science, 2019, 46(9):106-112. 10.11896/j.issn.1002-137X.2019.09.014 | |
16 | CAI X, LI S Y, LIU X Y, et al. Vision-based fall detection with multi-task hourglass convolutional auto-encoder[J]. IEEE Access, 2020, 8: 44493-44502. 10.1109/access.2020.2978249 |
17 | 曹建荣,吕俊杰,武欣莹,等. 融合运动特征和深度学习的跌倒检测算法[J]. 计算机应用, 2021, 41(2):583-589. 10.11772/j.issn.1001-9081.2020050705 |
CAO J R, LYU J J, WU X Y, et al. Fall detection algorithm integrating motion features and deep learning[J]. Journal of Computer Applications, 2021, 41(2): 583-589. 10.11772/j.issn.1001-9081.2020050705 | |
18 | GARCÍA E, VILLAR M, FÁÑEZ M, et al. Towards effective detection of elderly falls with CNN-LSTM neural networks[J]. Neurocomputing, 2022, 500:231-240. 10.1016/j.neucom.2021.06.102 |
19 | WANG B H, YU J, WANG K, et al. Fall detection based on dual-channel feature integration [J]. IEEE Access, 2020, 8: 103443-103453. 10.1109/access.2020.2999503 |
20 | WANG W H, XIE E Z, LI X, et al. Pyramid vision Transformer: a versatile backbone for dense prediction without convolutions[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 548-558. 10.1109/iccv48922.2021.00061 |
21 | HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Cham: Springer, 2016: 630-645. |
22 | MA J L, CHEN B. Dual refinement feature pyramid networks for object detection [EB/OL]. (2020-12-04) [2022-04-07].. |
23 | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 12993-13000. 10.1609/aaai.v34i07.6999 |
24 | WANG W H, XIE E Z, LI X, et al. PVTv2: improved baselines with pyramid vision transformer [J]. Computational Visual Media, 2022, 8(3): 415-424. 10.1007/s41095-022-0274-8 |
25 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[5] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
[6] | Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning [J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. |
[7] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[8] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[9] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[10] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||