Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2679-2685.DOI: 10.11772/j.issn.1001-9081.2022091389
• 2022 10th CCF Conference on Big Data • Previous Articles Next Articles
Yun OU1(), Kaiqing ZHOU1, Pengfei YIN2, Xuewei LIU3
Received:
2022-09-06
Revised:
2022-09-30
Accepted:
2022-10-08
Online:
2022-10-17
Published:
2023-09-10
Contact:
Yun OU
About author:
ZHOU Kaiqing, born in 1984, Ph. D., associate professor. His research interests include clinical assistant decision-making system, fuzzy Petri net, swarm intelligence algorithm.Supported by:
通讯作者:
欧云
作者简介:
周恺卿(1984—),男,湖南长沙人,副教授,博士,CCF会员,主要研究方向:临床辅助决策系统、模糊Petri网、群智能算法基金资助:
CLC Number:
Yun OU, Kaiqing ZHOU, Pengfei YIN, Xuewei LIU. Improved grey wolf optimizer algorithm based on dual convergence factor strategy[J]. Journal of Computer Applications, 2023, 43(9): 2679-2685.
欧云, 周恺卿, 尹鹏飞, 刘雪薇. 双收敛因子策略下的改进灰狼优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2679-2685.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091389
函数名 | 函数表达式 | 维度 | 范围 | 最优值 |
---|---|---|---|---|
Sphere | 30 | [-100,100] | 0 | |
Schwefel2.22 | 30 | [-10,10] | 0 | |
Schwefel1.2 | 30 | [-100,100] | 0 | |
Schwefel2.21 | 30 | [-100,100] | 0 | |
Rosenbrock | 30 | [-30,30] | 0 | |
Step | 30 | [-100,100] | 0 | |
Quartic | 30 | [-128,128] | 0 | |
Rastrigin | 30 | [-5.12,5.12] | 0 | |
Ackley | 30 | [-32,32] | 0 | |
Griewank | 30 | [-600,600] | 0 |
Tab. 1 Ten benchmark functions
函数名 | 函数表达式 | 维度 | 范围 | 最优值 |
---|---|---|---|---|
Sphere | 30 | [-100,100] | 0 | |
Schwefel2.22 | 30 | [-10,10] | 0 | |
Schwefel1.2 | 30 | [-100,100] | 0 | |
Schwefel2.21 | 30 | [-100,100] | 0 | |
Rosenbrock | 30 | [-30,30] | 0 | |
Step | 30 | [-100,100] | 0 | |
Quartic | 30 | [-128,128] | 0 | |
Rastrigin | 30 | [-5.12,5.12] | 0 | |
Ackley | 30 | [-32,32] | 0 | |
Griewank | 30 | [-600,600] | 0 |
测试函数 | 指标 | GWO | GWO1 | GWO2 | GWO3 | GWO4 | GWO-THW |
---|---|---|---|---|---|---|---|
F1 | 均值 | 2.12E-27 | 5.91E-292 | 1.23E-76 | 1.83E-37 | 1.90E-292 | 3.01E-293 |
标准差 | 4.06E-27 | 0 | 6.73E-76 | 4.61E-37 | 0 | 0 | |
F2 | 均值 | 7.44E-17 | 1.59E-178 | 3.00E-49 | 1.28E-22 | 2.61E-178 | 1.42E-177 |
标准差 | 7.71E-17 | 0 | 8.09E-49 | 1.09E-22 | 0 | 0 | |
F3 | 均值 | 4.27E-06 | 1.59E-243 | 5.52E-48 | 4.53E-02 | 6.86E-244 | 1.03E-246 |
标准差 | 6.63E-06 | 0 | 2.03E-47 | 1.30E-01 | 0 | 0 | |
F4 | 均值 | 7.29E-07 | 3.68E-148 | 7.17E-30 | 2.07E-07 | 4.63E-149 | 2.12E-149 |
标准差 | 5.78E-07 | 1.99E-147 | 1.71E-29 | 4.10E-07 | 1.67E-148 | 6.78E-149 | |
F5 | 均值 | 2.69E+01 | 2.65E+01 | 2.63E+01 | 2.66E+01 | 2.72E+01 | 2.67E+01 |
标准差 | 6.49E-01 | 4.15E-01 | 3.43E-01 | 4.00E-01 | 7.42E-01 | 4.23E-01 | |
F6 | 均值 | 8.21E-01 | 8.92E-03 | 9.86E-05 | 6.95E-06 | 6.73E-01 | 1.20E-05 |
标准差 | 4.16E-01 | 3.41E-02 | 2.82E-05 | 2.97E-06 | 3.94E-01 | 5.42E-06 | |
F7 | 均值 | 2.60E-03 | 1.55E-04 | 8.64E-04 | 3.09E-03 | 1.21E-04 | 1.48E-04 |
标准差 | 1.02E-03 | 1.20E-04 | 6.44E-04 | 2.03E-03 | 1.24E-04 | 1.29E-04 | |
F8 | 均值 | 3.22E+00 | 0 | 0 | 8.51E+00 | 0 | 0 |
标准差 | 4.10E+00 | 0 | 0 | 1.55E+01 | 0 | 0 | |
F9 | 均值 | 1.00E-13 | 0 | 4.74E-16 | 1.60E-14 | 0 | 0 |
标准差 | 1.87E-14 | 0 | 1.23E-15 | 3.20E-15 | 0 | 0 | |
F10 | 均值 | 4.63E-03 | 0 | 0 | 1.96E-03 | 0 | 0 |
标准差 | 9.20E-03 | 0 | 0 | 6.03E-03 | 0 | 0 |
Tab. 2 Ablation experiment results
测试函数 | 指标 | GWO | GWO1 | GWO2 | GWO3 | GWO4 | GWO-THW |
---|---|---|---|---|---|---|---|
F1 | 均值 | 2.12E-27 | 5.91E-292 | 1.23E-76 | 1.83E-37 | 1.90E-292 | 3.01E-293 |
标准差 | 4.06E-27 | 0 | 6.73E-76 | 4.61E-37 | 0 | 0 | |
F2 | 均值 | 7.44E-17 | 1.59E-178 | 3.00E-49 | 1.28E-22 | 2.61E-178 | 1.42E-177 |
标准差 | 7.71E-17 | 0 | 8.09E-49 | 1.09E-22 | 0 | 0 | |
F3 | 均值 | 4.27E-06 | 1.59E-243 | 5.52E-48 | 4.53E-02 | 6.86E-244 | 1.03E-246 |
标准差 | 6.63E-06 | 0 | 2.03E-47 | 1.30E-01 | 0 | 0 | |
F4 | 均值 | 7.29E-07 | 3.68E-148 | 7.17E-30 | 2.07E-07 | 4.63E-149 | 2.12E-149 |
标准差 | 5.78E-07 | 1.99E-147 | 1.71E-29 | 4.10E-07 | 1.67E-148 | 6.78E-149 | |
F5 | 均值 | 2.69E+01 | 2.65E+01 | 2.63E+01 | 2.66E+01 | 2.72E+01 | 2.67E+01 |
标准差 | 6.49E-01 | 4.15E-01 | 3.43E-01 | 4.00E-01 | 7.42E-01 | 4.23E-01 | |
F6 | 均值 | 8.21E-01 | 8.92E-03 | 9.86E-05 | 6.95E-06 | 6.73E-01 | 1.20E-05 |
标准差 | 4.16E-01 | 3.41E-02 | 2.82E-05 | 2.97E-06 | 3.94E-01 | 5.42E-06 | |
F7 | 均值 | 2.60E-03 | 1.55E-04 | 8.64E-04 | 3.09E-03 | 1.21E-04 | 1.48E-04 |
标准差 | 1.02E-03 | 1.20E-04 | 6.44E-04 | 2.03E-03 | 1.24E-04 | 1.29E-04 | |
F8 | 均值 | 3.22E+00 | 0 | 0 | 8.51E+00 | 0 | 0 |
标准差 | 4.10E+00 | 0 | 0 | 1.55E+01 | 0 | 0 | |
F9 | 均值 | 1.00E-13 | 0 | 4.74E-16 | 1.60E-14 | 0 | 0 |
标准差 | 1.87E-14 | 0 | 1.23E-15 | 3.20E-15 | 0 | 0 | |
F10 | 均值 | 4.63E-03 | 0 | 0 | 1.96E-03 | 0 | 0 |
标准差 | 9.20E-03 | 0 | 0 | 6.03E-03 | 0 | 0 |
测试 函数 | 算法 | 最差值 | 最佳值 | 平均值 | 标准差 | 测试 函数 | 算法 | 最差值 | 最佳值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | DE | 6.75E-01 | 3.73E-02 | 2.57E-01 | 1.63E-01 | F6 | DE | 6.96E-01 | 7.13E-02 | 2.34E-01 | 1.42E-01 |
FA | 5.96E-01 | 3.77E-01 | 4.88E-01 | 5.44E-02 | FA | 6.27E-01 | 3.92E-01 | 4.95E-01 | 5.18E-02 | ||
PSO | 2.09E-06 | 3.92E-16 | 7.81E-08 | 3.75E-07 | PSO | 5.36E+00 | 4.23E+00 | 4.78E+00 | 3.09E-01 | ||
GWO-THW | 8.94E-292 | 0 | 3.01E-293 | 0 | GWO-THW | 2.57E-05 | 4.67E-06 | 1.20E-05 | 5.42E-06 | ||
F2 | DE | 8.31E-01 | 1.75E-01 | 4.17E-01 | 1.81E-01 | F7 | DE | 3.96E+02 | 1.45E+01 | 7.34E+01 | 7.86E+01 |
FA | 3.84E+00 | 2.92E+00 | 3.24E+00 | 2.31E-01 | FA | 8.71E-01 | 3.79E-01 | 6.00E-01 | 1.21E-01 | ||
PSO | 3.79E-06 | 6.93E-11 | 6.27E-07 | 1.07E-06 | PSO | 1.54E-02 | 1.97E-04 | 3.82E-03 | 4.01E-03 | ||
GWO-THW | 3.38E-176 | 8.96E-186 | 1.42E-177 | 0 | GWO-THW | 5.99E-04 | 4.32E-06 | 1.48E-04 | 1.29E-04 | ||
F3 | DE | 7.61E+03 | 2.44E+04 | 1.49E+04 | 4.40E+03 | F8 | DE | 2.46E+02 | 1.79E+02 | 2.10E+02 | 1.54E+01 |
FA | 1.96E+00 | 9.67E-01 | 1.37E+00 | 2.25E-01 | FA | 2.86E+02 | 1.69E+02 | 2.27E+02 | 2.93E+01 | ||
PSO | 7.88E+01 | 3.39E-04 | 5.80E+00 | 1.54E+01 | PSO | 3.70E-05 | 0 | 1.55E-06 | 6.70E-06 | ||
GWO-THW | 1.60E-262 | 2.95E-245 | 1.03E-246 | 0 | GWO-THW | 0 | 0 | 0 | 0 | ||
F4 | DE | 3.35E+01 | 1.32E+01 | 2.15E+01 | 5.91E+00 | F9 | DE | 2.00E+01 | 1.14E-01 | 4.52E+00 | 7.79E+00 |
FA | 3.49E-01 | 2.54E-01 | 3.10E-01 | 2.36E-02 | FA | 2.00E+01 | 1.91E+01 | 1.97E+01 | 2.51E-01 | ||
PSO | 3.30E-02 | 6.45E-07 | 4.70E-03 | 7.87E-03 | PSO | 8.92E-05 | 5.38E-09 | 7.97E-06 | 1.77E-05 | ||
GWO-THW | 2.90E-148 | 8.81E-158 | 2.12E-149 | 6.78E-149 | GWO-THW | 0 | 0 | 0 | 0 | ||
F5 | DE | 1.74E+03 | 4.66E+01 | 2.69E+02 | 3.85E+02 | F10 | DE | 8.70E-01 | 9.10E-02 | 5.34E-01 | 2.39E-01 |
FA | 6.68E+02 | 6.37E+01 | 1.48E+02 | 1.63E+02 | FA | 6.12E-02 | 2.10E-02 | 3.43E-02 | 1.00E-02 | ||
PSO | 2.89E+01 | 2.72E+01 | 2.81E+01 | 4.54E-01 | PSO | 8.89E-06 | 9.66E-15 | 3.82E-07 | 1.59E-06 | ||
GWO-THW | 2.72E+01 | 2.60E+01 | 2.67E+01 | 4.23E-01 | GWO-THW | 0 | 0 | 0 | 0 |
Tab. 3 Comparison results of the proposed algorithm and other swarm intelligence algorithms
测试 函数 | 算法 | 最差值 | 最佳值 | 平均值 | 标准差 | 测试 函数 | 算法 | 最差值 | 最佳值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | DE | 6.75E-01 | 3.73E-02 | 2.57E-01 | 1.63E-01 | F6 | DE | 6.96E-01 | 7.13E-02 | 2.34E-01 | 1.42E-01 |
FA | 5.96E-01 | 3.77E-01 | 4.88E-01 | 5.44E-02 | FA | 6.27E-01 | 3.92E-01 | 4.95E-01 | 5.18E-02 | ||
PSO | 2.09E-06 | 3.92E-16 | 7.81E-08 | 3.75E-07 | PSO | 5.36E+00 | 4.23E+00 | 4.78E+00 | 3.09E-01 | ||
GWO-THW | 8.94E-292 | 0 | 3.01E-293 | 0 | GWO-THW | 2.57E-05 | 4.67E-06 | 1.20E-05 | 5.42E-06 | ||
F2 | DE | 8.31E-01 | 1.75E-01 | 4.17E-01 | 1.81E-01 | F7 | DE | 3.96E+02 | 1.45E+01 | 7.34E+01 | 7.86E+01 |
FA | 3.84E+00 | 2.92E+00 | 3.24E+00 | 2.31E-01 | FA | 8.71E-01 | 3.79E-01 | 6.00E-01 | 1.21E-01 | ||
PSO | 3.79E-06 | 6.93E-11 | 6.27E-07 | 1.07E-06 | PSO | 1.54E-02 | 1.97E-04 | 3.82E-03 | 4.01E-03 | ||
GWO-THW | 3.38E-176 | 8.96E-186 | 1.42E-177 | 0 | GWO-THW | 5.99E-04 | 4.32E-06 | 1.48E-04 | 1.29E-04 | ||
F3 | DE | 7.61E+03 | 2.44E+04 | 1.49E+04 | 4.40E+03 | F8 | DE | 2.46E+02 | 1.79E+02 | 2.10E+02 | 1.54E+01 |
FA | 1.96E+00 | 9.67E-01 | 1.37E+00 | 2.25E-01 | FA | 2.86E+02 | 1.69E+02 | 2.27E+02 | 2.93E+01 | ||
PSO | 7.88E+01 | 3.39E-04 | 5.80E+00 | 1.54E+01 | PSO | 3.70E-05 | 0 | 1.55E-06 | 6.70E-06 | ||
GWO-THW | 1.60E-262 | 2.95E-245 | 1.03E-246 | 0 | GWO-THW | 0 | 0 | 0 | 0 | ||
F4 | DE | 3.35E+01 | 1.32E+01 | 2.15E+01 | 5.91E+00 | F9 | DE | 2.00E+01 | 1.14E-01 | 4.52E+00 | 7.79E+00 |
FA | 3.49E-01 | 2.54E-01 | 3.10E-01 | 2.36E-02 | FA | 2.00E+01 | 1.91E+01 | 1.97E+01 | 2.51E-01 | ||
PSO | 3.30E-02 | 6.45E-07 | 4.70E-03 | 7.87E-03 | PSO | 8.92E-05 | 5.38E-09 | 7.97E-06 | 1.77E-05 | ||
GWO-THW | 2.90E-148 | 8.81E-158 | 2.12E-149 | 6.78E-149 | GWO-THW | 0 | 0 | 0 | 0 | ||
F5 | DE | 1.74E+03 | 4.66E+01 | 2.69E+02 | 3.85E+02 | F10 | DE | 8.70E-01 | 9.10E-02 | 5.34E-01 | 2.39E-01 |
FA | 6.68E+02 | 6.37E+01 | 1.48E+02 | 1.63E+02 | FA | 6.12E-02 | 2.10E-02 | 3.43E-02 | 1.00E-02 | ||
PSO | 2.89E+01 | 2.72E+01 | 2.81E+01 | 4.54E-01 | PSO | 8.89E-06 | 9.66E-15 | 3.82E-07 | 1.59E-06 | ||
GWO-THW | 2.72E+01 | 2.60E+01 | 2.67E+01 | 4.23E-01 | GWO-THW | 0 | 0 | 0 | 0 |
测试函数 | 指标 | GWO | EGWO | LGWO | NGWO | TGWO | OGWO | DGWO2 | GWO-THW |
---|---|---|---|---|---|---|---|---|---|
F1 | 均值 | 2.12E-27 | 1.17E-36 | 3.17E-30 | 1.16E-47 | 3.13E-76 | 5.09E-39 | 8.56E-63 | 3.01E-293 |
标准差 | 4.06E-27 | 1.05E-36 | 4.07E-20 | 2.72E-47 | 3.62E-76 | 1.43E-38 | 2.29E-62 | 0 | |
F2 | 均值 | 7.44E-17 | 2.84E-23 | 5.39E-19 | 2.92E-28 | 2.67E-41 | 1.40E-23 | 1.20E-35 | 1.42E-177 |
标准差 | 7.71E-17 | 1.47E-23 | 1.07E-02 | 4.16E-28 | 3.16E-41 | 2.43E-23 | 1.49E-35 | 0 | |
F3 | 均值 | 4.27E-06 | 6.19E-05 | 8.12E-08 | 9.98E-12 | 2.08E-39 | 4.83E-37 | 1.56E-60 | 1.03E-246 |
标准差 | 6.63E-06 | 1.21E-04 | 2.05E+00 | 1.99E-11 | 3.30E-39 | 1.88E-36 | 3.66E-60 | 0 | |
F4 | 均值 | 7.29E-07 | 2.43E-08 | 1.17E-08 | 7.15E-13 | 2.56E-29 | 2.34E-12 | 2.23E-14 | 2.12E-149 |
标准差 | 5.78E-07 | 4.08E-08 | 1.32E+00 | 7.60E-13 | 4.34E-29 | 5.21E-12 | 4.54E-14 | 6.78E-149 | |
F5 | 均值 | 2.69E+01 | 4.86E+01 | 8.35E+00 | 2.61E+01 | — | 2.67E+01 | 2.70E+01 | 2.67E+01 |
标准差 | 6.49E-01 | 9.44E+00 | 5.34E+00 | 3.96E-01 | — | 4.99E-01 | 5.91E-01 | 4.23E-01 | |
F6 | 均值 | 8.21E-01 | 0 | 2.69E-04 | 5.62E-01 | — | 5.59E-01 | 7.47E-01 | 1.20E-05 |
标准差 | 4.16E-01 | 0 | 2.30E-05 | 2.32E-01 | — | 3.34E-01 | 3.34E-01 | 5.42E-06 | |
F7 | 均值 | 2.60E-03 | 4.27E-03 | 3.02E-03 | 1.05E-03 | — | 1.69E-04 | 2.26E-03 | 1.48E-04 |
标准差 | 1.02E-03 | 1.50E-03 | 1.10E-03 | 2.32E-04 | — | 1.32E-04 | 1.14E-03 | 1.29E-04 | |
F8 | 均值 | 3.22E+00 | 1.35E+02 | 9.46E-02 | 0 | 0 | 1.89E-15 | 6.49E-01 | 0 |
标准差 | 4.10E+00 | 1.27E+01 | 2.16E+01 | 0 | 0 | 1.04E-14 | 1.34E+00 | 0 | |
F9 | 均值 | 1.00E-13 | 1.72E+00 | 2.12E-15 | 1.05E-14 | 0 | 1.03E-14 | 2.42E-14 | 0 |
标准差 | 1.87E-14 | 0 | 4.30E-02 | 2.39E-15 | 0 | 6.07E-15 | 5.39E-15 | 0 | |
F10 | 均值 | 4.63E-03 | 1.31E-08 | 2.42E-05 | 0 | 4.44E-15 | 1.31E-03 | 6.79E-03 | 0 |
标准差 | 9.20E-03 | 3.12E-08 | 8.39E-05 | 0 | 0 | 7.17E-03 | 1.27E-02 | 0 |
Tab. 4 Experimental results of GWO and its variants
测试函数 | 指标 | GWO | EGWO | LGWO | NGWO | TGWO | OGWO | DGWO2 | GWO-THW |
---|---|---|---|---|---|---|---|---|---|
F1 | 均值 | 2.12E-27 | 1.17E-36 | 3.17E-30 | 1.16E-47 | 3.13E-76 | 5.09E-39 | 8.56E-63 | 3.01E-293 |
标准差 | 4.06E-27 | 1.05E-36 | 4.07E-20 | 2.72E-47 | 3.62E-76 | 1.43E-38 | 2.29E-62 | 0 | |
F2 | 均值 | 7.44E-17 | 2.84E-23 | 5.39E-19 | 2.92E-28 | 2.67E-41 | 1.40E-23 | 1.20E-35 | 1.42E-177 |
标准差 | 7.71E-17 | 1.47E-23 | 1.07E-02 | 4.16E-28 | 3.16E-41 | 2.43E-23 | 1.49E-35 | 0 | |
F3 | 均值 | 4.27E-06 | 6.19E-05 | 8.12E-08 | 9.98E-12 | 2.08E-39 | 4.83E-37 | 1.56E-60 | 1.03E-246 |
标准差 | 6.63E-06 | 1.21E-04 | 2.05E+00 | 1.99E-11 | 3.30E-39 | 1.88E-36 | 3.66E-60 | 0 | |
F4 | 均值 | 7.29E-07 | 2.43E-08 | 1.17E-08 | 7.15E-13 | 2.56E-29 | 2.34E-12 | 2.23E-14 | 2.12E-149 |
标准差 | 5.78E-07 | 4.08E-08 | 1.32E+00 | 7.60E-13 | 4.34E-29 | 5.21E-12 | 4.54E-14 | 6.78E-149 | |
F5 | 均值 | 2.69E+01 | 4.86E+01 | 8.35E+00 | 2.61E+01 | — | 2.67E+01 | 2.70E+01 | 2.67E+01 |
标准差 | 6.49E-01 | 9.44E+00 | 5.34E+00 | 3.96E-01 | — | 4.99E-01 | 5.91E-01 | 4.23E-01 | |
F6 | 均值 | 8.21E-01 | 0 | 2.69E-04 | 5.62E-01 | — | 5.59E-01 | 7.47E-01 | 1.20E-05 |
标准差 | 4.16E-01 | 0 | 2.30E-05 | 2.32E-01 | — | 3.34E-01 | 3.34E-01 | 5.42E-06 | |
F7 | 均值 | 2.60E-03 | 4.27E-03 | 3.02E-03 | 1.05E-03 | — | 1.69E-04 | 2.26E-03 | 1.48E-04 |
标准差 | 1.02E-03 | 1.50E-03 | 1.10E-03 | 2.32E-04 | — | 1.32E-04 | 1.14E-03 | 1.29E-04 | |
F8 | 均值 | 3.22E+00 | 1.35E+02 | 9.46E-02 | 0 | 0 | 1.89E-15 | 6.49E-01 | 0 |
标准差 | 4.10E+00 | 1.27E+01 | 2.16E+01 | 0 | 0 | 1.04E-14 | 1.34E+00 | 0 | |
F9 | 均值 | 1.00E-13 | 1.72E+00 | 2.12E-15 | 1.05E-14 | 0 | 1.03E-14 | 2.42E-14 | 0 |
标准差 | 1.87E-14 | 0 | 4.30E-02 | 2.39E-15 | 0 | 6.07E-15 | 5.39E-15 | 0 | |
F10 | 均值 | 4.63E-03 | 1.31E-08 | 2.42E-05 | 0 | 4.44E-15 | 1.31E-03 | 6.79E-03 | 0 |
标准差 | 9.20E-03 | 3.12E-08 | 8.39E-05 | 0 | 0 | 7.17E-03 | 1.27E-02 | 0 |
1 | 李雅丽,王淑琴,陈倩茹,等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12. 10.3778/j.issn.1002-8331.2006-0291 |
LI Y L, WANG S Q, CHEN Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12. 10.3778/j.issn.1002-8331.2006-0291 | |
2 | 张文胜,郝孜奇,朱冀军,等. 基于改进灰狼算法优化BP神经网络的短时交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(2): 196-203. |
ZHANG W S, HAO Z Q, ZHU J J, et al. BP neural network model for short-time traffic flow forecasting based on transformed grey wolf optimizer algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 196-203. | |
3 | 王振东,刘尧迪,胡中栋,等. 利用改进灰狼算法优化BP神经网络的入侵检测[J]. 小型微型计算机系统, 2021, 42(4): 875-884. 10.3969/j.issn.1000-1220.2021.04.034 |
WANG Z D, LIU Y D, HU Z D, et al. Use improved grey wolf algorithm to optimize BP neural network intrusion detection[J]. Journal of Chinese Computer Systems, 2021, 42(4): 875-884. 10.3969/j.issn.1000-1220.2021.04.034 | |
4 | 李长安,谢宗奎,吴忠强,等. 改进灰狼算法及其在港口泊位调度中的应用[J]. 哈尔滨工业大学学报, 2021, 53(1): 101-108. 10.11918/201911117 |
LI C A, XIE Z K, WU Z Q, et al. Improved grey wolf algorithm and its application in port berth scheduling[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 101-108. 10.11918/201911117 | |
5 | JOSHI H, ARORA S. Enhanced grey wolf optimization algorithm for global optimization[J]. Fundamenta Informaticae, 2017, 153(3): 235-264. 10.3233/fi-2017-1539 |
6 | HEIDARI A A, PAHLAVANI P. An efficient modified grey wolf optimizer with Lévy flight for optimization tasks[J]. Applied Soft Computing, 2017, 60: 115-134. 10.1016/j.asoc.2017.06.044 |
7 | 王敏,唐明珠. 一种新型非线性收敛因子的灰狼优化算法[J]. 计算机应用研究, 2016, 33(12): 3648-3653. 10.3969/j.issn.1001-3695.2016.12.029 |
WANG M, TANG M Z. Novel grey wolf optimization algorithm based on nonlinear convergence factor[J]. Application Research of Computers, 2016, 33(12): 3648-3653. 10.3969/j.issn.1001-3695.2016.12.029 | |
8 | YU X B, XU W Y, LI C L. Opposition-based learning grey wolf optimizer for global optimization[J]. Knowledge-Based Systems, 2021, 226: No.107139. 10.1016/j.knosys.2021.107139 |
9 | ZHANG X Q, ZHANG Y Y, MING Z F. Improved dynamic grey wolf optimizer[J]. Frontiers of Information Technology and Electronic Engineering, 2021, 22(6): 877-890. 10.1631/fitee.2000191 |
10 | 张佳琦,顾幸生. 基于改进灰狼算法优化的支持向量机锌耗预测[J].华东理工大学学报(自然科学版), 2022, 48(3): 343-351. 10.14135/j.cnki.1006-3080.20210128001 |
ZHANG J Q, GU X S. Zinc consumption forecast of support vector based on improved grey wolf algorithm optimization[J]. Journal of East China University of Science and Technology, 2022, 48(3): 343-351. 10.14135/j.cnki.1006-3080.20210128001 | |
11 | 刘继忠,谢毓顺,徐文斌,等. 采用动态双子群策略改进的灰狼算法及其在心电信号识别中的应用[J]. 传感技术学报, 2021, 34(3): 420-426. 10.3969/j.issn.1004-1699.2021.03.019 |
LIU J Z, XIE Y S, XU W B, et al. An improved grey wolf algorithm based on dynamic double-subgroup strategy and its application in ECG recognition[J]. Chinese Journal of Sensors and Actuators, 2021, 34(3): 420-426. 10.3969/j.issn.1004-1699.2021.03.019 | |
12 | SHABEERKHAN S, PADMA A. A novel GWO optimized pruning technique for inexact circuit design[J]. Microprocessors and Microsystems, 2020, 73: No.102975. 10.1016/j.micpro.2019.102975 |
13 | TAWHID M A, IBRAHIM A M. A hybridization of grey wolf optimizer and differential evolution for solving nonlinear systems[J]. Evolving Systems, 2020, 11(1): 65-87. 10.1007/s12530-019-09291-8 |
14 | 郝芃斐,池瑞,屈志坚,等. 求解铁路物流配送中心选址问题的改进灰狼优化算法[J]. 计算机应用, 2021, 41(10):2905-2911. 10.11772/j.issn.1001-9081.2020121994 |
HAO P F, CHI R, QU Z J, et al. Improved grey wolf optimizer for location selection problem of railway logistics distribution center[J]. Journal of Computer Applications, 2021, 41(10):2905-2911. 10.11772/j.issn.1001-9081.2020121994 | |
15 | 刘威,郭直清,姜丰,等. 协同围攻策略改进的灰狼算法及其PID参数优化[J]. 计算机科学与探索, 2023, 17(3):620-634. 10.3778/j.issn.1673-9418.2105051 |
LIU W, GUO Z Q, JIANG F, et al. Improved grey wolf optimizer based on cooperative attack strategy and its PID parameter optimization[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3):620-634. 10.3778/j.issn.1673-9418.2105051 | |
16 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. 10.1016/j.advengsoft.2013.12.007 |
17 | FENG J H, ZHANG J, ZHU X S, et al. A novel chaos optimization algorithm[J]. Multimedia Tools and Applications, 2017, 76(16): 17405-17436. 10.1007/s11042-016-3907-z |
18 | 张孟健,张浩,陈曦,等. 基于Cubic映射的灰狼优化算法及应用[J]. 计算机工程与科学, 2021, 43(11): 2035-2042. 10.3969/j.issn.1007-130X.2021.11.017 |
ZHANG M J, ZHANG H, CHEN X, et al. A grey wolf optimization algorithm based on Cubic mapping and its application[J]. Computer Engineering and Science, 2021, 43(11): 2035-2042. 10.3969/j.issn.1007-130X.2021.11.017 |
[1] | Zhongrui QIU, Hong MIAO, Chengbi ZENG. Improved slime mould algorithm with multi-strategy fusion [J]. Journal of Computer Applications, 2023, 43(3): 812-819. |
[2] | Jun CHEN, Qing HE, Shouyu LI. Archimedes optimization algorithm based on golden Levy guidance mechanism [J]. Journal of Computer Applications, 2022, 42(9): 2807-2815. |
[3] | Xin YONG, Yuelin GAO, Yahua HE, Huimin WANG. Improved firefly algorithm based on multi-strategy fusion [J]. Journal of Computer Applications, 2022, 42(12): 3847-3855. |
[4] | JIA Heming, LI Yao, JIANG Zichao, SUN Kangjian. Multi-threshold segmentation of forest fire images based on modified symbiotic organisms search algorithm [J]. Journal of Computer Applications, 2021, 41(5): 1465-1470. |
[5] | XU Feixue, LIU Qinming, OUYANG Hailing, YE Chunming. Optimization of maintenance strategy model for multi-component system based on performance-based contract [J]. Journal of Computer Applications, 2021, 41(4): 1184-1191. |
[6] | WANG Bo, LIU Liansheng, HAN Shaocheng, ZHU Shixing. Hybrid multi-objective grasshopper optimization algorithm based on fusion of multiple strategies [J]. Journal of Computer Applications, 2020, 40(9): 2670-2676. |
[7] | LIU Xiaoming, SHEN Mingyu, HOU Zhengfeng. Firefly fuzzy clustering algorithm based on Levy flight [J]. Journal of Computer Applications, 2019, 39(11): 3257-3262. |
[8] | LI Ning, LI Gang, DENG Zhongliang. Application of improved grey wolf optimizer algorithm in soil moisture monitoring and forecasting system [J]. Journal of Computer Applications, 2017, 37(4): 1202-1206. |
[9] | CHEN Chuang, Ryad CHELLALI, XING Yin. Improved grey wolf optimizer algorithm using dynamic weighting and probabilistic disturbance strategy [J]. Journal of Computer Applications, 2017, 37(12): 3493-3497. |
[10] | XU Dayu, LIU Renping. Improved self-organized criticality optimized gray wolf optimizer metaheuristic algorithm [J]. Journal of Computer Applications, 2016, 36(6): 1588-1593. |
[11] | FU Qiang, GE Hongwei, SU Shuzhi. Particle swarm optimization algorithm with firefly behavior and Levy flight [J]. Journal of Computer Applications, 2016, 36(12): 3298-3302. |
[12] | ZHANG Qiantu, FANG Liqing, ZHAO Yulong. Double subgroups fruit fly optimization algorithm with characteristics of Levy flight [J]. Journal of Computer Applications, 2015, 35(5): 1348-1352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||