Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (9): 2747-2755.DOI: 10.11772/j.issn.1001-9081.2023091372
• Data science and technology • Previous Articles Next Articles
Lilin FAN1,2(), Fukang CAO1, Wanting WANG3, Kai YANG1, Zhaoyu SONG1
Received:
2023-10-13
Revised:
2023-12-12
Accepted:
2023-12-20
Online:
2024-01-31
Published:
2024-09-10
Contact:
Lilin FAN
About author:
CAO Fukang, born in 1997, M. S. candidate. His research interests include demand forecasting, safety stock.Supported by:
范黎林1,2(), 曹富康1, 王琬婷3, 杨凯1, 宋钊瑜1
通讯作者:
范黎林
作者简介:
范黎林(1970—),男,河南周口人,副教授,博士,主要研究方向:商务智能、工业大数据分析基金资助:
CLC Number:
Lilin FAN, Fukang CAO, Wanting WANG, Kai YANG, Zhaoyu SONG. Intermittent demand forecasting method based on adaptive matching of demand patterns[J]. Journal of Computer Applications, 2024, 44(9): 2747-2755.
范黎林, 曹富康, 王琬婷, 杨凯, 宋钊瑜. 基于需求模式自适应匹配的间歇性需求预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2747-2755.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023091372
模型 | 需求量序列所占比例 | 间隔量序列所占比例 | ||
---|---|---|---|---|
数据集1 | 数据集2 | 数据集1 | 数据集2 | |
SES | 42 | 25 | 17 | 38 |
ARIMA | 3 | 3 | 8 | 1 |
M-SVR | 3 | 8 | 6 | 2 |
BHT_ARIMA | 9 | 16 | 12 | 20 |
LightGBM | 33 | 43 | 33 | 34 |
LSTM | 10 | 5 | 24 | 5 |
Tab. 1 Adaptation of different prediction models to datasets
模型 | 需求量序列所占比例 | 间隔量序列所占比例 | ||
---|---|---|---|---|
数据集1 | 数据集2 | 数据集1 | 数据集2 | |
SES | 42 | 25 | 17 | 38 |
ARIMA | 3 | 3 | 8 | 1 |
M-SVR | 3 | 8 | 6 | 2 |
BHT_ARIMA | 9 | 16 | 12 | 20 |
LightGBM | 33 | 43 | 33 | 34 |
LSTM | 10 | 5 | 24 | 5 |
样本编号 | 需求量真实值 | 需求量 预测值 | 间隔量真实值 | 间隔量 预测值 |
---|---|---|---|---|
1 | 1 | 1.1 | 6 | 5.96 |
2 | 1 | 1.1 | 9 | 9.00 |
3 | 1 | 1.1 | 36 | 34.29 |
4 | 1 | 1.1 | 11 | 10.97 |
5 | 1 | 1.1 | 24 | 22.38 |
… | … | … | … | … |
2499 | 3 | 2.2 | 1 | 1.52 |
2500 | 1 | 2.2 | 1 | 1.79 |
2501 | 2 | 1.2 | 1 | 1.71 |
2502 | 1 | 1.1 | 1 | 1.41 |
2503 | 1 | 1.1 | 1 | 1.56 |
Tab. 2 Examples of demand and interval prediction on dataset 1
样本编号 | 需求量真实值 | 需求量 预测值 | 间隔量真实值 | 间隔量 预测值 |
---|---|---|---|---|
1 | 1 | 1.1 | 6 | 5.96 |
2 | 1 | 1.1 | 9 | 9.00 |
3 | 1 | 1.1 | 36 | 34.29 |
4 | 1 | 1.1 | 11 | 10.97 |
5 | 1 | 1.1 | 24 | 22.38 |
… | … | … | … | … |
2499 | 3 | 2.2 | 1 | 1.52 |
2500 | 1 | 2.2 | 1 | 1.79 |
2501 | 2 | 1.2 | 1 | 1.71 |
2502 | 1 | 1.1 | 1 | 1.41 |
2503 | 1 | 1.1 | 1 | 1.56 |
样本编号 | 需求量真实值 | 需求量 预测值 | 间隔量真实值 | 间隔量 预测值 |
---|---|---|---|---|
1 | 1 | 1.17 | 15 | 14.50 |
2 | 2 | 2.26 | 7 | 7.30 |
3 | 1 | 1.17 | 16 | 15.20 |
4 | 1 | 1.17 | 16 | 15.20 |
5 | 2 | 2.26 | 21 | 18.98 |
… | … | … | … | … |
4996 | 6 | 6.27 | 14 | 13.55 |
4997 | 32 | 32.00 | 5 | 5.49 |
4998 | 2 | 2.26 | 3 | 3.76 |
4999 | 10 | 10.58 | 11 | 10.95 |
5000 | 1 | 1.17 | 10 | 10.06 |
Tab. 3 Examples of demand and interval prediction on dataset 2
样本编号 | 需求量真实值 | 需求量 预测值 | 间隔量真实值 | 间隔量 预测值 |
---|---|---|---|---|
1 | 1 | 1.17 | 15 | 14.50 |
2 | 2 | 2.26 | 7 | 7.30 |
3 | 1 | 1.17 | 16 | 15.20 |
4 | 1 | 1.17 | 16 | 15.20 |
5 | 2 | 2.26 | 21 | 18.98 |
… | … | … | … | … |
4996 | 6 | 6.27 | 14 | 13.55 |
4997 | 32 | 32.00 | 5 | 5.49 |
4998 | 2 | 2.26 | 3 | 3.76 |
4999 | 10 | 10.58 | 11 | 10.95 |
5000 | 1 | 1.17 | 10 | 10.06 |
方法 | 数据集1 | 数据集2 | ||||
---|---|---|---|---|---|---|
RMSE | MAE | RMSSE | RMSE | MAE | RMSSE | |
SBA | 0.717 1 | 0.598 3 | 0.634 2 | 3.608 1 | 2.382 5 | 0.548 1 |
ESLD | 0.663 3 | 0.542 6 | 0.580 8 | 3.563 7 | 2.334 8 | 0.542 6 |
B_A | 0.803 3 | 0.567 6 | 0.697 4 | 4.485 7 | 2.576 4 | 0.646 9 |
DA | 0.655 4 | 0.539 6 | 0.572 6 | 3.821 3 | 2.452 4 | 0.547 6 |
LightGBM | 0.673 3 | 0.547 2 | 0.596 6 | 3.720 6 | 2.406 3 | 0.639 4 |
SOFM | 0.657 3 | 0.531 7 | 0.577 6 | 3.553 6 | 2.308 8 | 0.541 8 |
CMS | 0.747 2 | 0.631 3 | 0.647 2 | 5.411 1 | 4.619 9 | 0.722 6 |
IDCF | 0.692 1 | 0.563 6 | 0.599 5 | 3.753 8 | 2.518 6 | 0.547 3 |
C+R | 0.662 1 | 0.521 5 | 0.571 5 | 3.557 9 | 2.287 2 | 0.524 3 |
本文方法 | 0.643 5 | 0.504 3 | 0.565 7 | 3.223 8 | 1.754 9 | 0.490 9 |
Tab. 4 Comparative performance results of different methods (prediction for 6 months)
方法 | 数据集1 | 数据集2 | ||||
---|---|---|---|---|---|---|
RMSE | MAE | RMSSE | RMSE | MAE | RMSSE | |
SBA | 0.717 1 | 0.598 3 | 0.634 2 | 3.608 1 | 2.382 5 | 0.548 1 |
ESLD | 0.663 3 | 0.542 6 | 0.580 8 | 3.563 7 | 2.334 8 | 0.542 6 |
B_A | 0.803 3 | 0.567 6 | 0.697 4 | 4.485 7 | 2.576 4 | 0.646 9 |
DA | 0.655 4 | 0.539 6 | 0.572 6 | 3.821 3 | 2.452 4 | 0.547 6 |
LightGBM | 0.673 3 | 0.547 2 | 0.596 6 | 3.720 6 | 2.406 3 | 0.639 4 |
SOFM | 0.657 3 | 0.531 7 | 0.577 6 | 3.553 6 | 2.308 8 | 0.541 8 |
CMS | 0.747 2 | 0.631 3 | 0.647 2 | 5.411 1 | 4.619 9 | 0.722 6 |
IDCF | 0.692 1 | 0.563 6 | 0.599 5 | 3.753 8 | 2.518 6 | 0.547 3 |
C+R | 0.662 1 | 0.521 5 | 0.571 5 | 3.557 9 | 2.287 2 | 0.524 3 |
本文方法 | 0.643 5 | 0.504 3 | 0.565 7 | 3.223 8 | 1.754 9 | 0.490 9 |
方法 | 数据集1 | 数据集2 | ||||
---|---|---|---|---|---|---|
RMSE | MAE | RMSSE | RMSE | MAE | RMSSE | |
SBA | 0.796 0 | 0.625 0 | 0.728 0 | 3.880 1 | 2.288 1 | 0.607 6 |
ESLD | 0.752 0 | 0.575 0 | 0.688 4 | 3.850 8 | 2.248 1 | 0.605 4 |
B_A | 0.978 5 | 0.630 6 | 0.896 1 | 4.895 0 | 2.325 6 | 0.779 0 |
DA | 0.753 1 | 0.569 3 | 0.695 9 | 3.907 6 | 2.362 5 | 0.617 3 |
LightGBM | 0.757 3 | 0.575 4 | 0.696 3 | 3.628 6 | 1.710 1 | 0.589 4 |
SOFM | 0.745 9 | 0.562 9 | 0.684 9 | 3.844 5 | 2.224 1 | 0.604 7 |
CMS | 0.815 4 | 0.646 2 | 0.736 0 | 5.452 5 | 4.439 8 | 0.749 9 |
IDCF | 0.792 6 | 0.614 9 | 0.714 9 | 4.263 7 | 2.720 4 | 0.635 2 |
C+R | 0.781 1 | 0.568 4 | 0.711 3 | 3.985 5 | 2.164 1 | 0.623 7 |
本文方法 | 0.740 7 | 0.535 9 | 0.679 7 | 3.657 4 | 1.695 8 | 0.579 1 |
Tab. 5 Comparative performance results of different methods (prediction for 12 months)
方法 | 数据集1 | 数据集2 | ||||
---|---|---|---|---|---|---|
RMSE | MAE | RMSSE | RMSE | MAE | RMSSE | |
SBA | 0.796 0 | 0.625 0 | 0.728 0 | 3.880 1 | 2.288 1 | 0.607 6 |
ESLD | 0.752 0 | 0.575 0 | 0.688 4 | 3.850 8 | 2.248 1 | 0.605 4 |
B_A | 0.978 5 | 0.630 6 | 0.896 1 | 4.895 0 | 2.325 6 | 0.779 0 |
DA | 0.753 1 | 0.569 3 | 0.695 9 | 3.907 6 | 2.362 5 | 0.617 3 |
LightGBM | 0.757 3 | 0.575 4 | 0.696 3 | 3.628 6 | 1.710 1 | 0.589 4 |
SOFM | 0.745 9 | 0.562 9 | 0.684 9 | 3.844 5 | 2.224 1 | 0.604 7 |
CMS | 0.815 4 | 0.646 2 | 0.736 0 | 5.452 5 | 4.439 8 | 0.749 9 |
IDCF | 0.792 6 | 0.614 9 | 0.714 9 | 4.263 7 | 2.720 4 | 0.635 2 |
C+R | 0.781 1 | 0.568 4 | 0.711 3 | 3.985 5 | 2.164 1 | 0.623 7 |
本文方法 | 0.740 7 | 0.535 9 | 0.679 7 | 3.657 4 | 1.695 8 | 0.579 1 |
1 | TÜRKMEN A C, JANUSCHOWSKI T, WANG Y, et al. Forecasting intermittent and sparse time series: a unified probabilistic framework via deep renewal processes [J]. PLoS ONE, 2021, 16(11): e0259764. |
2 | CROSTON J D. Forecasting and stock control for intermittent demands [J]. Journal of the Operational Research Society, 1972, 23(3): 289-303. |
3 | SYNTETOS A A, BOYLAN J E. The accuracy of intermittent demand estimates [J]. International Journal of Forecasting, 2005, 21(2): 303-314. |
4 | PRESTWICH S D, TARIM S A, ROSSI R. Intermittency and obsolescence: a Croston method with linear decay [J]. International Journal of Forecasting, 2021, 37(2): 708-715. |
5 | SHI Q, YIN J, CAI J, et al. Block Hankel tensor ARIMA for multiple short time series forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5758-5766. |
6 | 郎祎平,毛文涛,罗铁军,等.间歇性时间序列的可预测性评估及联合预测方法[J].计算机应用,2022,42(9):2722-2731. |
LANG Y P, MAO W T, LUO T J, et al. Predictability evaluation and joint forecasting method for intermittent time series [J]. Journal of Computer Applications, 2022, 42(9): 2722-2731. | |
7 | FAN L, LIU X, MAO W, et al. Spare parts demand forecasting method based on intermittent feature adaptation [J]. Entropy, 2023, 25(5): 764. |
8 | ULRICH M, JAHNKE H, LANGROCK R, et al. Distributional regression for demand forecasting in e-grocery [J]. European Journal of Operational Research, 2021, 294(3): 831-842. |
9 | 任春华,孙林夫,韩敏. 面向多价值链的汽车配件需求预测模型[J]. 计算机集成制造系统,2021,27(10): 2786-2800. |
REN C H, SUN L F, HAN M. Demand forecasting model of auto parts for multi-value chains [J]. Computer Integrated Manufacturing Systems, 2021, 27(10): 2786-2800. | |
10 | ROŽANEC J M, FORTUNA B, MLADENIĆ D. Reframing demand forecasting: a two-fold approach for lumpy and intermittent demand [J]. Sustainability, 2022, 14(15): 9295. |
11 | ZHUANG X, YU Y, CHEN A. A combined forecasting method for intermittent demand using the automotive aftermarket data [J]. Data Science and Management, 2022, 5(2): 43-56. |
12 | LIU J, LIN L, LI Z, et al. Spare aeroengine demand prediction model based on deep Croston method [J]. Journal of Aerospace Information Systems, 2020, 17(2): 125-133. |
13 | 孔子庆, 刘白杨, 刘济. 一种新的不常用备件需求预测和库存优化方法[J]. 华东理工大学学报 (自然科学版), 2022, 48(3): 366-372. |
KONG Z Q, LIU B Y, LIU J. A new approach for demand forecasting and inventory optimization of the rarely used spare parts [J]. Journal of East China University of Science and Technology (Natural Science Edition), 2022, 48(3): 366-372. | |
14 | TIAN X, WANG H, ERJIANG E. Forecasting intermittent demand for inventory management by retailers: a new approach[J]. Journal of Retailing and Consumer Services, 2021, 62: 102662. |
15 | 付维方,穆彩虹,刘英杰.基于机器学习方法的航空消耗件需求自适应预测 [J].科学技术与工程,2022,22(11):4609-4617. |
FU W F, MU C H, LIU Y J. Adaptive demand prediction of aviation consumable spare parts based on machine learning method[J]. Science Technology and Engineering, 2022, 22(11): 4609-4617. | |
16 | ULRICH M, JAHNKE H, LANGROCK R, et al. Classification-based model selection in retail demand forecasting [J]. International Journal of Forecasting, 2022, 38(1): 209-223. |
17 | SYNTETOS A A, BOYLAN J E, CROSTON J D. On the categorization of demand patterns [J]. Journal of the Operational Research Society, 2005, 56(5): 495-503. |
18 | KE G, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 3149-3157. |
19 | FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. |
20 | SUN X, LIU M, SIMA Z. A novel cryptocurrency price trend forecasting model based on LightGBM [J]. Finance Research Letters, 2020, 32: 101084. |
21 | 翟茜彤. 基于soft-DTW距离的聚类分析及其在A股市场的应用[D]. 济南:山东大学, 2022. |
ZHAI Q T. Clustering analysis based on soft-DTW distance and its applications in A-share market[D]. Jinan: Shandong University, 2022. | |
22 | 王继东,顾志成,葛磊蛟,等.改进萤火虫算法与K-means算法结合的配电网负荷聚类特性分析[J].天津大学学报(自然科学与工程技术版),2023,56(2):137-147. |
WANG J D, GU Z C, GE L J, et al. Load clustering characteristic analysis of the distribution network based on the combined improved firefly algorithm and K-means algorithm [J]. Journal of Tianjin University (Science and Technology), 2023, 56(2): 137-147. | |
23 | QIU Y, CHEN P, LIN Z, et al. Clustering analysis for silent telecom customers based on K-means++ [C]// Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2020: 1023-1027. |
24 | THEERTHAGIRI P, RUBY A U. Seasonal learning based ARIMA algorithm for prediction of Brent oil price trends [J]. Multimedia Tools and Applications, 2023, 82: 24485-24504. |
25 | MAKRIDAKIS S, PETROPOULOS F, SPILIOTIS E. The M5 competition: conclusions [J]. International Journal of Forecasting, 2022,38(4): 1576-1582. |
26 | KHEAWPEAM N, SINTHUPINYO S. Demand forecasting using machine learning to manage product inventory for multi-channel retailing store [C]// Proceedings of the 2023 IEEE International Conference on Omni-layer Intelligent Systems. Piscataway: IEEE, 2023: 1-6. |
27 | OUKASSI H, HASNI M, LAYEB S B. Long short-term memory networks for forecasting demand in the case of automotive manufacturing industry [C]// Proceedings of the 2023 IEEE International Conference on Advanced Systems and Emergent Technologies. Piscataway: IEEE, 2023: 1-6. |
28 | SHI J. Application of the model combining demand forecasting and inventory decision in feature based newsvendor problem [J]. Computers & Industrial Engineering, 2022, 173: 108709. |
29 | PUNIA S, SHANKAR S. Predictive analytics for demand forecasting: a deep learning-based decision support system [J]. Knowledge-Based Systems, 2022, 258: 109956. |
30 | BABAI M Z, DALLERY Y, BOUBAKER S, et al. A new method to forecast intermittent demand in the presence of inventory obsolescence [J]. International Journal of Production Economics, 2019, 209: 30-41. |
[1] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[2] | Maozu GUO, Yazhe ZHANG, Lingling ZHAO. Electric vehicle charging station siting method based on spatial semantics and individual activities [J]. Journal of Computer Applications, 2023, 43(9): 2819-2827. |
[3] | Yiping LANG, Wentao MAO, Tiejun LUO, Lilin FAN, Yingying REN, Xia LIU. Predictability evaluation and joint forecasting method for intermittent time series [J]. Journal of Computer Applications, 2022, 42(9): 2722-2731. |
[4] | Huilin LI, Hongtao LI, Zhi LI. Air passenger demand forecasting based on dual decomposition and reconstruction strategy [J]. Journal of Computer Applications, 2022, 42(12): 3931-3940. |
[5] | XIAO Yong, ZHENG Kaihong, ZHENG Zhenjing, QIAN Bin, LI Sen, MA Qianli. Multi-scale skip deep long short-term memory network for short-term multivariate load forecasting [J]. Journal of Computer Applications, 2021, 41(1): 231-236. |
[6] | XU Yabin, PENG Hong'en. PaaS platform resource allocation method based on demand forecasting [J]. Journal of Computer Applications, 2019, 39(6): 1583-1588. |
[7] | . Redundant Haar wavelet transform and time series forecasting based on improved lifting scheme [J]. Journal of Computer Applications, 2007, 27(1): 58-60. |
[8] | HAN Xue-mei;;. New time series forecasting approach for complex systems based on series decomposing [J]. Journal of Computer Applications, 2006, 26(4): 888-890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||