Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3649-3657.DOI: 10.11772/j.issn.1001-9081.2024111602
• Advanced computing • Previous Articles
Lihu PAN1(
), Menglin ZHANG1, Guangrui FAN1, Linliang ZHANG2, Rui ZHANG1
Received:2024-11-14
Revised:2025-03-27
Accepted:2025-04-08
Online:2025-04-22
Published:2025-11-10
Contact:
Lihu PAN
About author:ZHANG Menglin, born in 2001, M. S. candidate. His research interests include traffic prediction, artificial intelligence.Supported by:通讯作者:
潘理虎
作者简介:张梦麟(2001—),男,山西太原人,硕士研究生,主要研究方向:交通预测、人工智能基金资助:CLC Number:
Lihu PAN, Menglin ZHANG, Guangrui FAN, Linliang ZHANG, Rui ZHANG. Wavelet decomposition-based enhanced time delay awareness for traffic flow prediction[J]. Journal of Computer Applications, 2025, 45(11): 3649-3657.
潘理虎, 张梦麟, 樊光瑞, 张林梁, 张睿. 基于小波分解的增强时间延迟感知交通流量预测[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3649-3657.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111602
| 数据集 | 节点数 | 边数 | 时间 步数 | 时间间隔/min | 时间范围 |
|---|---|---|---|---|---|
| PeMS03 | 358 | 547 | 26 208 | 5 | 2018-09-01 — 2018-11-30 |
| PeMS04 | 307 | 340 | 16 992 | 5 | 2018-01-01 — 2018-02-28 |
| PeMS07 | 883 | 866 | 28 224 | 5 | 2017-05-01 — 2017-08-31 |
| PeMS08 | 170 | 295 | 17 856 | 5 | 2016-07-01— 2016-08-31 |
Tab.1 Dataset summary
| 数据集 | 节点数 | 边数 | 时间 步数 | 时间间隔/min | 时间范围 |
|---|---|---|---|---|---|
| PeMS03 | 358 | 547 | 26 208 | 5 | 2018-09-01 — 2018-11-30 |
| PeMS04 | 307 | 340 | 16 992 | 5 | 2018-01-01 — 2018-02-28 |
| PeMS07 | 883 | 866 | 28 224 | 5 | 2017-05-01 — 2017-08-31 |
| PeMS08 | 170 | 295 | 17 856 | 5 | 2016-07-01— 2016-08-31 |
| 数据集 | 处理批次大小b | 卷积核 大小k | 小波基函数 | 路网邻接 矩阵阈值 |
|---|---|---|---|---|
| PeMS03 | 64 | 5 | Symlet 2 | 0.12 |
| PeMS04 | 64 | 5 | Daubechies 1 | 0.12 |
| PeMS07 | 32 | 5 | Daubechies 1 | 0.13 |
| PeMS08 | 128 | 9 | Coiflet 1 | 0.10 |
Tab. 2 Settings of WTA-LAGNN on four datasets
| 数据集 | 处理批次大小b | 卷积核 大小k | 小波基函数 | 路网邻接 矩阵阈值 |
|---|---|---|---|---|
| PeMS03 | 64 | 5 | Symlet 2 | 0.12 |
| PeMS04 | 64 | 5 | Daubechies 1 | 0.12 |
| PeMS07 | 32 | 5 | Daubechies 1 | 0.13 |
| PeMS08 | 128 | 9 | Coiflet 1 | 0.10 |
| 模型 | PeMS03 | PeMS04 | PeMS07 | PeMS08 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MAE | RMSE | MAPE/% | MAE | RMSE | MAPE/% | MAE | RMSE | MAPE/% | MAE | RMSE | MAPE/% | |
| HA | 31.58 | 52.39 | 33.78 | 38.03 | 59.24 | 27.88 | 45.12 | 65.64 | 24.51 | 34.86 | 59.24 | 27.88 |
| VAR | 23.65 | 38.26 | 24.51 | 24.54 | 38.61 | 17.24 | 50.22 | 75.63 | 32.22 | 19.19 | 29.81 | 13.10 |
| DCRNN | 17.99 | 30.31 | 18.34 | 21.22 | 33.44 | 14.17 | 25.22 | 38.61 | 11.82 | 16.82 | 26.36 | 10.92 |
| STSGCN | 17.48 | 29.21 | 16.78 | 21.19 | 33.65 | 13.90 | 24.26 | 39.03 | 10.21 | 17.13 | 26.80 | 10.96 |
| STFGNN | 16.76 | 28.33 | 16.31 | 19.82 | 31.87 | 13.03 | 23.43 | 36.57 | 9.20 | 16.89 | 26.01 | 10.57 |
| Z-GCNETs | 16.64 | 28.15 | 16.39 | 19.50 | 31.61 | 12.78 | — | — | — | 15.76 | 25.11 | 10.01 |
| STG-NCDE | 27.09 | 15.06 | 19.21 | 31.09 | 12.76 | 15.45 | 24.81 | 9.92 | ||||
| ST-CGCN | 16.66 | 27.71 | 16.30 | 20.79 | 33.62 | 13.71 | 23.50 | 37.28 | 9.71 | 17.84 | 26.43 | 10.63 |
| GSTPRN | — | — | — | 19.45 | 31.91 | 12.96 | — | — | — | 15.68 | 24.96 | 10.09 |
| GRAM-ODE | 15.72 | 15.98 | 19.55 | 31.05 | 12.66 | 21.75 | 34.42 | 9.74 | 16.05 | 25.17 | 10.58 | |
| TFM-GCAM | — | — | — | — | — | — | — | — | — | |||
| TPLLM | — | — | — | 19.53 | 31.93 | 12.81 | — | — | — | 15.45 | 25.35 | 9.88 |
| STFGCN | — | — | — | 12.36 | — | — | — | 15.23 | 24.35 | 9.83 | ||
| 本文模型 | 14.77 | 26.36 | 18.28 | 30.06 | 19.34 | 32.93 | 8.08 | 13.19 | 22.97 | 8.84 | ||
Tab. 3 Performance comparison of different models on four datasets
| 模型 | PeMS03 | PeMS04 | PeMS07 | PeMS08 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MAE | RMSE | MAPE/% | MAE | RMSE | MAPE/% | MAE | RMSE | MAPE/% | MAE | RMSE | MAPE/% | |
| HA | 31.58 | 52.39 | 33.78 | 38.03 | 59.24 | 27.88 | 45.12 | 65.64 | 24.51 | 34.86 | 59.24 | 27.88 |
| VAR | 23.65 | 38.26 | 24.51 | 24.54 | 38.61 | 17.24 | 50.22 | 75.63 | 32.22 | 19.19 | 29.81 | 13.10 |
| DCRNN | 17.99 | 30.31 | 18.34 | 21.22 | 33.44 | 14.17 | 25.22 | 38.61 | 11.82 | 16.82 | 26.36 | 10.92 |
| STSGCN | 17.48 | 29.21 | 16.78 | 21.19 | 33.65 | 13.90 | 24.26 | 39.03 | 10.21 | 17.13 | 26.80 | 10.96 |
| STFGNN | 16.76 | 28.33 | 16.31 | 19.82 | 31.87 | 13.03 | 23.43 | 36.57 | 9.20 | 16.89 | 26.01 | 10.57 |
| Z-GCNETs | 16.64 | 28.15 | 16.39 | 19.50 | 31.61 | 12.78 | — | — | — | 15.76 | 25.11 | 10.01 |
| STG-NCDE | 27.09 | 15.06 | 19.21 | 31.09 | 12.76 | 15.45 | 24.81 | 9.92 | ||||
| ST-CGCN | 16.66 | 27.71 | 16.30 | 20.79 | 33.62 | 13.71 | 23.50 | 37.28 | 9.71 | 17.84 | 26.43 | 10.63 |
| GSTPRN | — | — | — | 19.45 | 31.91 | 12.96 | — | — | — | 15.68 | 24.96 | 10.09 |
| GRAM-ODE | 15.72 | 15.98 | 19.55 | 31.05 | 12.66 | 21.75 | 34.42 | 9.74 | 16.05 | 25.17 | 10.58 | |
| TFM-GCAM | — | — | — | — | — | — | — | — | — | |||
| TPLLM | — | — | — | 19.53 | 31.93 | 12.81 | — | — | — | 15.45 | 25.35 | 9.88 |
| STFGCN | — | — | — | 12.36 | — | — | — | 15.23 | 24.35 | 9.83 | ||
| 本文模型 | 14.77 | 26.36 | 18.28 | 30.06 | 19.34 | 32.93 | 8.08 | 13.19 | 22.97 | 8.84 | ||
| 模型 | MAE | RMSE | MAPE/% |
|---|---|---|---|
| w/o wavedec | 13.53 | 23.77 | 9.04 |
| w/o T-D-S | 13.60 | 23.81 | 9.01 |
| w/o D-S | 13.50 | 23.53 | 8.98 |
| w/o T-D | 13.46 | 23.43 | 9.00 |
| w/o T-S | 13.38 | 23.49 | 8.92 |
| w/o D | 13.39 | 23.37 | 8.98 |
| w/o S | 13.33 | 23.21 | 8.85 |
| w/o T | 13.27 | 23.18 | 8.88 |
| WTA-LAGNN | 13.19 | 22.97 | 8.84 |
Tab. 4 Ablation experimental results of WTA-LAGNN
| 模型 | MAE | RMSE | MAPE/% |
|---|---|---|---|
| w/o wavedec | 13.53 | 23.77 | 9.04 |
| w/o T-D-S | 13.60 | 23.81 | 9.01 |
| w/o D-S | 13.50 | 23.53 | 8.98 |
| w/o T-D | 13.46 | 23.43 | 9.00 |
| w/o T-S | 13.38 | 23.49 | 8.92 |
| w/o D | 13.39 | 23.37 | 8.98 |
| w/o S | 13.33 | 23.21 | 8.85 |
| w/o T | 13.27 | 23.18 | 8.88 |
| WTA-LAGNN | 13.19 | 22.97 | 8.84 |
| 注意力头数 | MAE | RMSE | MAPE/% |
|---|---|---|---|
| 2 | 14.45 | 23.56 | 9.65 |
| 4 | 13.71 | 23.13 | 9.05 |
| 8 | 13.19 | 22.97 | 8.84 |
| 16 | 13.68 | 23.21 | 8.99 |
Tab. 5 Impact of the number of attention heads on model performance
| 注意力头数 | MAE | RMSE | MAPE/% |
|---|---|---|---|
| 2 | 14.45 | 23.56 | 9.65 |
| 4 | 13.71 | 23.13 | 9.05 |
| 8 | 13.19 | 22.97 | 8.84 |
| 16 | 13.68 | 23.21 | 8.99 |
| 卷积核大小 | MAE | RMSE | MAPE/% |
|---|---|---|---|
| 5 | 13.37 | 23.19 | 8.95 |
| 7 | 13.25 | 23.03 | 8.98 |
| 9 | 13.19 | 22.97 | 8.84 |
| 11 | 13.52 | 23.75 | 8.91 |
Tab. 6 Impact of convolution kernel size on model performance
| 卷积核大小 | MAE | RMSE | MAPE/% |
|---|---|---|---|
| 5 | 13.37 | 23.19 | 8.95 |
| 7 | 13.25 | 23.03 | 8.98 |
| 9 | 13.19 | 22.97 | 8.84 |
| 11 | 13.52 | 23.75 | 8.91 |
| [1] | WANG B, ZHENG H, QIAN K, et al. Edge computing and AI-driven intelligent traffic monitoring and optimization[J]. Applied and Computational Engineering, 2024, 77: 225-230. |
| [2] | FOULADGAR M, PARCHAMI M, ELMASRI R, et al. Scalable deep traffic flow neural networks for urban traffic congestion prediction[C]// Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 2251-2258. |
| [3] | 杨立宁,李艳婷.基于SVD和ARIMA的时空序列分解与预测[J]. 计算机工程,2021,47(3):53-61. |
| YANG L N, LI Y T. Spatio-temporal sequence decomposition and prediction based on SVD and ARIMA[J]. Computer Engineering, 2021, 47(3): 53-61. | |
| [4] | CHANDRA S R, AL-DEEK H. Predictions of freeway traffic speeds and volumes using vector autoregressive models[J]. Journal of Intelligent Transportation Systems, 2009, 13(2): 53-72. |
| [5] | KIM Y, BANG H. Introduction to Kalman filter and its applications[M]// GOVAERS F. Introduction and implementations of the Kalman filter. London: IntechOpen Limited, 2019: 1-16. |
| [6] | JEONG S, BAEK Y, SON S H. Distributed urban platooning towards high flexibility, adaptability, and stability[J]. Sensors, 2021, 21(8): No.2684. |
| [7] | ZHUANG W, CAO Y. Short-term traffic flow prediction based on a K-Nearest neighbor and bidirectional long short-term memory model[J]. Applied Sciences, 2023, 13(4): No.2681. |
| [8] | SAYED S A, ABDEL-HAMID Y, HEFNY H A. Artificial intelligence-based traffic flow prediction: a comprehensive review[J]. Journal of Electrical Systems and Information Technology, 2023, 10: No.13. |
| [9] | CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1724-1734. |
| [10] | CUI Z, KE R, PU Z, et al. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values[J]. Transportation Research Part C: Emerging Technologies, 2020, 118: No.102674. |
| [11] | MA X, TAO Z, WANG Y, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. |
| [12] | 杨鑫,陈雪妮,吴春江,等.结合变种残差模型和Transformer的城市公路短时交通流预测[J].计算机应用,2024,44(9):2947-2951. |
| YANG X, CHEN X N, WU C J, et al. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer[J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. | |
| [13] | DO L N N, VU H L, VO B Q, et al. An effective spatial-temporal attention based neural network for traffic flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 108: 12-28. |
| [14] | CIRSTEA R G, YANG B, GUO C, et al. Towards spatio-temporal aware traffic time series forecasting[C]// Proceedings of the IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 2900-2913. |
| [15] | LIU H, ZHU C, ZHANG D, et al. Attention-based spatial-temporal graph convolutional recurrent networks for traffic forecasting[C]// Proceedings of the 2023 International Conference on Advanced Data Mining and Applications, LNCS 14176. Cham: Springer, 2023: 630-645. |
| [16] | ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. |
| [17] | LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. [2024-07-17]. . |
| [18] | SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 914-921. |
| [19] | LI M, ZHU Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4189-4196. |
| [20] | YU L, LIU W, WU D, et al. Spatial-temporal combination and multi-head flow-attention network for traffic flow prediction[J]. Scientific Reports, 2024, 14: No.9604. |
| [21] | CHEN Y, SEGOVIA-DOMINGUEZ I, GEL Y R. Z-GCNETs: time zigzags at graph convolutional networks for time series forecasting[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 1684-1694. |
| [22] | XIONG Y, WANG H. Spatio-temporal contextual conditions causality and spread delay-aware modeling for traffic flow prediction[J]. IEEE Access, 2024, 12: 21250-21261. |
| [23] | BAO Y, HUANG J, SHEN Q, et al. Spatial-temporal complex graph convolution network for traffic flow prediction[J]. Engineering Applications of Artificial Intelligence, 2023, 121: No.106044. |
| [24] | 赵文竹,袁冠,张艳梅,等.多视角融合的时空动态GCN城市交通流量预测[J].软件学报,2024,35(4):1751-1773. |
| ZHAO W Z, YUAN G, ZHANG Y M, et al. Multi-view fused spatial-temporal dynamic GCN for urban traffic flow prediction[J]. Journal of Software, 2024, 35(4): 1751-1773. | |
| [25] | MA Y, LOU H, YAN M, et al. Spatio-temporal fusion graph convolutional network for traffic flow forecasting[J]. Information Fusion, 2024, 104: No.102196. |
| [26] | HARROU F, ZEROUAL A, KADRI F, et al. Enhancing road traffic flow prediction with improved deep learning using wavelet Transforms[J]. Results in Engineering, 2024, 23: No.102342. |
| [27] | YANG S, QIAN S. Understanding and predicting travel time with spatio-temporal features of network traffic flow, weather and incidents[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11(3): 12-28. |
| [28] | MA C, DAI G, ZHOU J. Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5615-5624. |
| [29] | WANG S, ZHANG M, MIAO H, et al. Multivariate correlation-aware spatio-temporal graph convolutional networks for multi-scale traffic prediction[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(3): No.38. |
| [30] | LI H, LV Z, LI J, et al. Traffic flow forecasting in the covid-19: a deep spatial-temporal model based on discrete wavelet transformation[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(5): No.64. |
| [31] | JANA J, TRIPATHI S, CHOWDHURY R S, et al. An area efficient VLSI architecture for 1-D and 2-D Discrete Wavelet Transform (DWT) and Inverse Discrete Wavelet Transform (IDWT)[C]// Proceedings of the 2021 International Conference on Devices for Integrated Circuit. Piscataway: IEEE, 2021: 378-382. |
| [32] | FOUMANI N M, TAN C W, WEBB G I, et al. Improving position encoding of transformers for multivariate time series classification[J]. Data Mining and Knowledge Discovery, 2024, 38(1): 22-48. |
| [33] | WANG K, AN J, ZHOU M, et al. Minority-weighted graph neural network for imbalanced node classification in social networks of internet of people[J]. IEEE Internet of Things Journal, 2023, 10(1): 330-340. |
| [34] | LEE-THORP J, AINSLIE J, ECKSTEIN I, et al. FNet: mixing tokens with Fourier Transforms[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 4296-4313. |
| [35] | CHOI J, CHOI H, HWANG J, et al. Graph neural controlled differential equations for traffic forecasting[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 6367-6374. |
| [36] | CHEN J, ZHENG L, HU Y, et al. Traffic flow matrix-based graph neural network with attention mechanism for traffic flow prediction[J]. Information Fusion, 2024, 104: No.102146. |
| [37] | REN Y, CHEN Y, LIU S, et al. TPLLM: a traffic prediction framework based on pretrained large language models[EB/OL]. [2024-05-22]. . |
| [1] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
| [2] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [3] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
| [4] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
| [5] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
| [6] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
| [7] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
| [8] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
| [9] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
| [10] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
| [11] | Xiaoqiang ZHAO, Yongyong LIU, Yongyong HUI, Kai LIU. Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2245-2252. |
| [12] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
| [13] | Weigang LI, Xinyi LI, Yongqiang WANG, Yuntao ZHAO. Point cloud classification and segmentation method based on adaptive dynamic graph convolution and parameter-free attention [J]. Journal of Computer Applications, 2025, 45(6): 1980-1986. |
| [14] | Sheping ZHAI, Yan HUANG, Qing YANG, Rui YANG. Multi-view entity alignment combining triples and text attributes [J]. Journal of Computer Applications, 2025, 45(6): 1793-1800. |
| [15] | Xiang WANG, Qianqian CUI, Xiaoming ZHANG, Jianchao WANG, Zhenzhou WANG, Jialin SONG. Wireless capsule endoscopy image classification model based on improved ConvNeXt [J]. Journal of Computer Applications, 2025, 45(6): 2016-2024. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||