Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 3764-3770.DOI: 10.11772/j.issn.1001-9081.2024121806
• Artificial intelligence • Previous Articles Next Articles
Haoxiang XU1, Dunhui YU1,2, Yichen DENG3, Kui XIAO1,2
Received:2024-12-24
Revised:2025-04-14
Accepted:2025-04-18
Online:2025-04-25
Published:2025-12-10
Contact:
Yichen DENG
About author:XU Haoxiang, born in 1999, M. S. candidate. His research interests include knowledge graph, knowledge reasoning.Supported by:许浩翔1, 余敦辉1,2, 邓怡辰3, 肖奎1,2
通讯作者:
邓怡辰
作者简介:许浩翔(1999—),男,江苏扬州人,硕士研究生,主要研究方向:知识图谱、知识推理基金资助:CLC Number:
Haoxiang XU, Dunhui YU, Yichen DENG, Kui XIAO. Knowledge graph constrained question answering model based on hierarchical reinforcement learning[J]. Journal of Computer Applications, 2025, 45(12): 3764-3770.
许浩翔, 余敦辉, 邓怡辰, 肖奎. 基于分层强化学习的知识图谱约束问答模型[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3764-3770.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024121806
| 数据集 | 实体数 | 关系数 | 三元组数 | 问题跳数 | 问题总数 |
|---|---|---|---|---|---|
| PQ | 2 127 | 14 | 4 037 | mix | 7 033 |
| 2 | 5 201 | ||||
| 3 | 1 832 | ||||
| PQL | 5 035 | 353 | 11 397 | mix | 2 661 |
| 2 | 1 604 | ||||
| 3 | 1 057 | ||||
| MetaQA | 42 086 | 9 | 125 847 | mix | 7 932 |
| 2 | 4 067 | ||||
| 3 | 3 865 | ||||
| FBKQA | 126 578 | 908 | 458 534 | mix | 1 175 |
| 2 | 628 | ||||
| 3 | 547 |
Tab. 1 Dataset information
| 数据集 | 实体数 | 关系数 | 三元组数 | 问题跳数 | 问题总数 |
|---|---|---|---|---|---|
| PQ | 2 127 | 14 | 4 037 | mix | 7 033 |
| 2 | 5 201 | ||||
| 3 | 1 832 | ||||
| PQL | 5 035 | 353 | 11 397 | mix | 2 661 |
| 2 | 1 604 | ||||
| 3 | 1 057 | ||||
| MetaQA | 42 086 | 9 | 125 847 | mix | 7 932 |
| 2 | 4 067 | ||||
| 3 | 3 865 | ||||
| FBKQA | 126 578 | 908 | 458 534 | mix | 1 175 |
| 2 | 628 | ||||
| 3 | 547 |
| 实验环境 | 具体信息 |
|---|---|
| 操作系统 | Windows 11 |
| 内存 | DDR4 64 GB |
| CPU | Intel i7 13700kf |
| GPU | GeForce RTX 4090 |
| 开发语言 | Python 3. 9. 0 |
| 深度学习框架 | PyTorch 1. 9 |
Tab. 2 Experimental environment information
| 实验环境 | 具体信息 |
|---|---|
| 操作系统 | Windows 11 |
| 内存 | DDR4 64 GB |
| CPU | Intel i7 13700kf |
| GPU | GeForce RTX 4090 |
| 开发语言 | Python 3. 9. 0 |
| 深度学习框架 | PyTorch 1. 9 |
| 数据集 | 跳数 | KVMemNet | IRN | SRN | COPAR | KGQA‑HRL |
|---|---|---|---|---|---|---|
| PQ | mix | 75.6 | 81.2 | 79.5 | 82.3 | 85.4 |
| 2 | 81.4 | 84.7 | 84.2 | 85.3 | 87.5 | |
| 3 | 69.4 | 80.2 | 79.2 | 83.4 | 86.4 | |
| PQL | mix | 68.6 | 72.6 | 76.2 | 75.3 | 77.3 |
| 2 | 70.5 | 73.7 | 74.5 | 75.5 | 76.5 | |
| 3 | 63.4 | 72.3 | 77.4 | 76.6 | 78.7 | |
| MetaQA | mix | 68.6 | 84.3 | 73.2 | 84.5 | 85.2 |
| 2 | 74.3 | 85.5 | 85.1 | 85.7 | 87.2 | |
| 3 | 53.8 | 83.9 | 65.2 | 84.3 | 86.4 | |
| FBKQA | mix | 53.7 | 60.3 | 63.2 | 69.5 | 72.5 |
| 2 | 67.3 | 69.6 | 70.3 | 73.4 | 74.1 | |
| 3 | 46.5 | 55.4 | 47.6 | 60.8 | 65.4 |
Tab. 3 Accuracy comparison of KGQA-HRL and other models
| 数据集 | 跳数 | KVMemNet | IRN | SRN | COPAR | KGQA‑HRL |
|---|---|---|---|---|---|---|
| PQ | mix | 75.6 | 81.2 | 79.5 | 82.3 | 85.4 |
| 2 | 81.4 | 84.7 | 84.2 | 85.3 | 87.5 | |
| 3 | 69.4 | 80.2 | 79.2 | 83.4 | 86.4 | |
| PQL | mix | 68.6 | 72.6 | 76.2 | 75.3 | 77.3 |
| 2 | 70.5 | 73.7 | 74.5 | 75.5 | 76.5 | |
| 3 | 63.4 | 72.3 | 77.4 | 76.6 | 78.7 | |
| MetaQA | mix | 68.6 | 84.3 | 73.2 | 84.5 | 85.2 |
| 2 | 74.3 | 85.5 | 85.1 | 85.7 | 87.2 | |
| 3 | 53.8 | 83.9 | 65.2 | 84.3 | 86.4 | |
| FBKQA | mix | 53.7 | 60.3 | 63.2 | 69.5 | 72.5 |
| 2 | 67.3 | 69.6 | 70.3 | 73.4 | 74.1 | |
| 3 | 46.5 | 55.4 | 47.6 | 60.8 | 65.4 |
| 模型 | PQ-Mix | PQL-Mix | MetaQA-Mix | FBKQA-Mix |
|---|---|---|---|---|
| w/o con | 82.2 | 76.9 | 83.7 | 60.4 |
| w/o update | 78.7 | 66.4 | 83.6 | 51.3 |
| KGQA‑HRL | 85.4 | 77.3 | 85.2 | 72.5 |
Tab. 4 Analysis of impact of different strategies on model accuracy
| 模型 | PQ-Mix | PQL-Mix | MetaQA-Mix | FBKQA-Mix |
|---|---|---|---|---|
| w/o con | 82.2 | 76.9 | 83.7 | 60.4 |
| w/o update | 78.7 | 66.4 | 83.6 | 51.3 |
| KGQA‑HRL | 85.4 | 77.3 | 85.2 | 72.5 |
| [1] | 姚奕,尹瑞江,陈朝阳. 问答系统构建及推理研究综述[J]. 计算机技术与发展, 2023, 33(12): 8-16. |
| YAO Y, YIN R J, CHEN Z Y. A review of question answering system construction and inference research[J]. Computer Technology and Development, 2023, 33(12): 8-16. | |
| [2] | 毕鑫,聂豪杰,赵相国,等. 面向知识图谱约束问答的强化学习推理技术[J]. 软件学报, 2023, 34(10): 4565-4583. |
| BI X, NIE H J, ZHAO X G, et al. Reinforcement learning inference techniques for knowledge graph constrained question answering [J]. Journal of Software, 2023, 34(10): 4565-4583. | |
| [3] | YANI M, KRISNADHI A A. Challenges, techniques, and trends of simple knowledge graph question answering: a survey[J]. Information, 2021, 12(7): No.271. |
| [4] | 李振军,赵华,刘祖军,等. 基于路径排序的元路径模式搜索算法[J].微处理机, 2024, 45(5): 29-32. |
| LI Z J, ZHAO H, LIU Z J, et al. Metapath pattern search algorithm based on path ranking[J]. Microprocessors, 2024, 45(5): 29-32. | |
| [5] | ZHOU M, HUANG M, ZHU X. An interpretable reasoning network for multi-relation question answering [C]// Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg: ACL, 2018: 2010-2022. |
| [6] | XIONG W, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 564-573. |
| [7] | DAS R, DHULIAWALA S, ZAHEER M, et al. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning [EB/OL]. [2025-04-07].. |
| [8] | BAI L, YU W, CHEN M, et al. Multi-hop reasoning over paths in temporal knowledge graphs using reinforcement learning[J]. Applied Soft Computing, 2021, 103: No.107144. |
| [9] | 杨旭华,高良煜. 基于动态分层强化学习的知识图谱推理[J]. 小型微型计算机系统, 2025, 46(5): 1081-1088. |
| YANG X H, GAO L Y. Knowledge graph reasoning based on dynamic hierarchical reinforcement learning[J]. Journal of Chinese Computer Systems, 2025, 46(5): 1081-1088. | |
| [10] | ZHAO T, HACHIYA H, NIU G, et al. Analysis and improvement of policy gradient estimation[J]. Neural Networks, 2012, 26: 118-129. |
| [11] | SHEN Y, CHEN J, HUANG P S, et al. M-Walk: learning to walk over graphs using Monte Carlo tree search [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 6787-6798. |
| [12] | WAN G, PAN S, GONG C, et al. Reasoning like human: hierarchical reinforcement learning for knowledge graph reasoning[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2020: 1926-1932. |
| [13] | WANG Q, HAO Y, CAO J. ADRL: an attention-based deep reinforcement learning framework for knowledge graph reasoning[J]. Knowledge-Based Systems, 2020, 197: No.105910. |
| [14] | ZHANG Q, WENG X, ZHOU G, et al. ARL: an adaptive reinforcement learning framework for complex question answering over knowledge base[J]. Information Processing and Management, 2022, 59(3): No.102933. |
| [15] | QIU Y, WANG Y, JIN X, et al. Stepwise reasoning for multi-relation question answering over knowledge graph with weak supervision[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 474-482. |
| [16] | 王宇航. 面向复杂问题的知识图谱问答方法研究[D]. 成都:电子科技大学, 2024. |
| WANG Y H. Research on knowledge graph question answering methods for complex problems[D]. Chengdu: University of Electronic Science and Technology of China, 2024. | |
| [17] | LIN X V, SOCHER R, XIONG C. Multi-hop knowledge graph reasoning with reward shaping[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3243-3253. |
| [18] | KAISER M, SAHA ROY R, WEIKUM G. Reinforcement learning from reformulations in conversational question answering over knowledge graphs [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 459-469. |
| [19] | PUTERMAN M L. Chapter 8 Markov decision processes[J]. Handbooks in Operations Research and Management Science, 1990, 2: 331-434. |
| [20] | 周岩,范永胜,孙松,等. 一种面向知识图谱多跳问答的分层语义解析方法[J]. 计算机应用研究, 2025, 42(3): 714-719. |
| ZHOU Y, FAN Y S, SUN S, et al. Hierarchical semantic parsing approach for multi-hop question answering on knowledge graphs[J]. Application Research of Computers, 2025, 42(3): 714-719. | |
| [21] | BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge [C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250. |
| [22] | ZHANG Y, DAI H, KOZAREVA Z, et al. Variational reasoning for question answering with knowledge graph [EB/OL]. [2024-10-26]. . |
| [23] | TAPASWI M, ZHU Y, STIEFELHAGEN R, et al. MovieQA: understanding stories in movies through question-answering [EB/OL]. [2024-10-26]. . |
| [24] | MILLER A, FISCH A, DODGE J, et al. Key-value memory networks for directly reading documents [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 1400-1409. |
| [25] | SHEN Y, HUANG P-S, CHANG M-W, et al. Implicit ReasoNet: modeling large-scale structured relationships with shared memory [EB/OL]. [2024-10-26]. . |
| [1] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [2] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
| [3] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
| [4] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
| [5] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
| [6] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
| [7] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
| [8] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
| [9] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
| [10] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
| [11] | Xiaoqiang ZHAO, Yongyong LIU, Yongyong HUI, Kai LIU. Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2245-2252. |
| [12] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
| [13] | Sheping ZHAI, Yan HUANG, Qing YANG, Rui YANG. Multi-view entity alignment combining triples and text attributes [J]. Journal of Computer Applications, 2025, 45(6): 1793-1800. |
| [14] | Xiang WANG, Qianqian CUI, Xiaoming ZHANG, Jianchao WANG, Zhenzhou WANG, Jialin SONG. Wireless capsule endoscopy image classification model based on improved ConvNeXt [J]. Journal of Computer Applications, 2025, 45(6): 2016-2024. |
| [15] | Haijie WANG, Guangxin ZHANG, Hai SHI, Shu CHEN. Document-level relation extraction based on entity representation enhancement [J]. Journal of Computer Applications, 2025, 45(6): 1809-1816. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||