Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 3757-3763.DOI: 10.11772/j.issn.1001-9081.2024121814
• Artificial intelligence • Previous Articles Next Articles
Jincai YANG, Qixu BAN, Xusheng YANG, Xianjun SHEN
Received:2024-12-25
Revised:2025-03-15
Accepted:2025-03-20
Online:2025-03-27
Published:2025-12-10
Contact:
Qixu BAN
About author:YANG Jincai, born in 1967, Ph. D., professor. His research interests include database and information systems, Chinese information processing, natural language processing, artificial intelligence.Supported by:杨进才, 班启旭, 杨旭生, 沈显君
通讯作者:
班启旭
作者简介:杨进才(1967—),男,湖北咸宁人,教授,博士,CCF会员,主要研究方向:数据库与信息系统、中文信息处理、自然语言处理、人工智能基金资助:CLC Number:
Jincai YANG, Qixu BAN, Xusheng YANG, Xianjun SHEN. Multi-label classification method integrating external semantic knowledge[J]. Journal of Computer Applications, 2025, 45(12): 3757-3763.
杨进才, 班启旭, 杨旭生, 沈显君. 融合外部语义知识的多标签分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3757-3763.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024121814
| 方法 | Pmicro | Rmicro | F1mirco | HLoss |
|---|---|---|---|---|
| Bi-LSTM | 70.46 | 29.77 | 41.85 | 17.32 |
| TextCNN | 70.32 | 46.43 | 55.93 | 14.98 |
| BERT | 70.54 | 49.49 | 58.17 | 14.60 |
| BigBird | 71.46 | 44.75 | 55.04 | 14.57 |
| YANGX | 65.19 | 45.95 | 53.9 | 15.36 |
| FMLG | 66.75 | 51.51 | 58.15 | 15.40 |
| MCVK | 68.07 | 42.87 | 52.59 | 16.05 |
| LASA | 71.03 | 46.60 | 56.28 | 15.04 |
| HSGIN | 73.20 | 49.96 | 59.33 | 14.02 |
Tab.1 Comparison of experimental results of different methods
| 方法 | Pmicro | Rmicro | F1mirco | HLoss |
|---|---|---|---|---|
| Bi-LSTM | 70.46 | 29.77 | 41.85 | 17.32 |
| TextCNN | 70.32 | 46.43 | 55.93 | 14.98 |
| BERT | 70.54 | 49.49 | 58.17 | 14.60 |
| BigBird | 71.46 | 44.75 | 55.04 | 14.57 |
| YANGX | 65.19 | 45.95 | 53.9 | 15.36 |
| FMLG | 66.75 | 51.51 | 58.15 | 15.40 |
| MCVK | 68.07 | 42.87 | 52.59 | 16.05 |
| LASA | 71.03 | 46.60 | 56.28 | 15.04 |
| HSGIN | 73.20 | 49.96 | 59.33 | 14.02 |
| 融合状态 | Pmicro | Rmicro | F1mirco | HLoss |
|---|---|---|---|---|
| 未融合 | 36.17 | 31.28 | 33.52 | 11.16 |
| 融合 | 57.81 | 54.06 | 55.87 | 10.12 |
Tab.2 Comparison of tail label experimental results
| 融合状态 | Pmicro | Rmicro | F1mirco | HLoss |
|---|---|---|---|---|
| 未融合 | 36.17 | 31.28 | 33.52 | 11.16 |
| 融合 | 57.81 | 54.06 | 55.87 | 10.12 |
| 方法 | Pmicro | Rmicro | F1micro | HLoss |
|---|---|---|---|---|
| HSGINno | 66.62 | 50.23 | 57.27 | 15.34 |
| HSGIN | 73.20 | 49.96 | 59.33 | 14.02 |
Tab.3 Comparison of ablation experimental results
| 方法 | Pmicro | Rmicro | F1micro | HLoss |
|---|---|---|---|---|
| HSGINno | 66.62 | 50.23 | 57.27 | 15.34 |
| HSGIN | 73.20 | 49.96 | 59.33 | 14.02 |
| [1] | HUANG S J, ZHOU Z H. Multi-label learning by exploiting label correlations locally[C]// Proceedings of the 26th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2012: 949-955. |
| [2] | LEI K, FU Q, YANG M, et al. Tag recommendation by text classification with attention-based capsule network[J]. Neurocomputing, 2020, 391: 65-73. |
| [3] | DEMSZKY D, MOVSHOVITZ-ATTIAS D, KO J, et al. GoEmotions: a dataset of fine-grained emotions[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4040-4054. |
| [4] | KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751. |
| [5] | YANG Z, EMMERT-STREIB F. Optimal performance of binary relevance CNN in targeted multi-label text classification[J]. Knowledge-Based Systems, 2024, 284: No.111286. |
| [6] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
| [7] | 吕学强,彭郴,张乐,等. 融合BERT与标签语义注意力的文本多标签分类方法[J]. 计算机应用, 2022, 42(1): 57-63. |
| LYU X Q, PENG C, ZHANG L, et al. Text multi-label classification method incorporating BERT and label semantic attention[J]. Journal of Computer Applications, 2022, 42(1): 57-63. | |
| [8] | LIU N, WANG Q, REN J. Label-embedding bi-directional attentive model for multi-label text classification[J]. Neural Processing Letters, 2021, 53(1): 375-389. |
| [9] | 杨茜. 基于Bi-LSTM和图注意力网络的多标签文本分类算法[J]. 计算机应用与软件, 2023, 40(9): 145-150, 183 |
| YANG Q. Multi-label text classification algorithm based on Bi-LSTM and graph attention network[J]. Computer Applications and Software, 2023, 40(9): 145-150, 183. | |
| [10] | BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771. |
| [11] | CLARE A, KING R D. Knowledge discovery in multi-label phenotype data[C]// Principles of Data Mining and Knowledge Discovery: PKDD 2001, LNCS 2168. Berlin: Springer, 2001: 42-53. |
| [12] | XIAO L, HUANG X, CHEN B, et al. Label-specific document representation for multi-label text classification[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 466-475. |
| [13] | 肖琳,陈博理,黄鑫,等. 基于标签语义注意力的多标签文本分类[J]. 软件学报, 2020, 31(4): 1079-1089. |
| XIAO L, CHEN B L, HUANG X, et al. Multi-label text classification method based on label semantic information[J]. Journal of Software, 2020, 31(4): 1079-1089. | |
| [14] | DU C, CHEN Z, FENG F, et al. Explicit interaction model towards text classification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 6359-6366. |
| [15] | 王振东,董开坤,黄俊恒,等. SemFA:基于语义特征与关联注意力的大规模多标签文本分类模型[J]. 计算机科学, 2023, 50(12): 270-278. |
| WANG Z D, DONG K K, HUANG J H, et al. SemFA: extreme multi-label text classification model based on semantic features and association attention[J]. Computer Science, 2023, 50(12): 270-278. | |
| [16] | ZHENG S, ZHOU J, MENG K, et al. Label-dividing gated graph neural network for hierarchical text classification[C]// Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-8. |
| [17] | WANG B, LIU J, CHEN S, et al. A residual dynamic graph convolutional network for multi-Label text classification[C]// Proceedings of the 2021 CCF International Conference on Natural Language Processing and Chinese Computing, LNCS 13028. Cham: Springer, 2021: 664-675. |
| [18] | REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using Siamese BERT-networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 3982-3992. |
| [19] | ZHANG S, ZHENG D, HU X, et al. Bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Beijing: Chinese Information Processing Society of China, 2015: 73-78. |
| [20] | HU Z, DONG Y, WANG K, et al. Heterogeneous graph transformer[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 2704-2710. |
| [21] | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-12-25].. |
| [22] | ZAHEER M, GURUGANESH G, DUBEY A, et al. BigBird: Transformers for longer sequences[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 17283-17297. |
| [23] | 韩泓霖,单丽莉,孙承杰,等. 融合标签语义知识的价值观多标签文本分类[J]. 中文信息学报, 2023, 37(10): 64-75. |
| HAN H L, SHAN L L, SUN C J, et al. Multi-label text classification combining semantic knowledge of value labels[J]. Journal of Chinese Information Processing, 2023, 37(10): 64-75. | |
| [24] | 金雨澄,王清钦,高剑,等. 基于图深度学习的金融文本多标签分类算法[J]. 计算机工程, 2022, 48(4): 16-21. |
| JIN Y C, WANG Q Q, GAO J, et al. Multi-label financial text classification algorithm based on graph deep learning[J]. Computer Engineering, 2022, 48(4): 16-21. |
| [1] | Chao LIU, Yanhua YU. Knowledge-aware recommendation model combining denoising strategy and multi-view contrastive learning [J]. Journal of Computer Applications, 2025, 45(9): 2827-2837. |
| [2] | Chun XU, Shuangyan JI, Huan MA, Enwei SUN, Mengmeng WANG, Mingyu SU. Consultation recommendation method based on knowledge graph and dialogue structure [J]. Journal of Computer Applications, 2025, 45(4): 1157-1168. |
| [3] | Liqin WANG, Zhilei GENG, Yingshuang LI, Yongfeng DONG, Meng BIAN. Open-world knowledge reasoning model based on path and enhanced triplet text [J]. Journal of Computer Applications, 2025, 45(4): 1177-1183. |
| [4] | Jing ZHOU, Zhenyang TANG, Hui DONG, Xin LIU. Multi-label text classification method of power customer service work orders integrating feature enhancement and contrastive learning [J]. Journal of Computer Applications, 2025, 45(12): 3847-3854. |
| [5] | Rui LI, Guanfeng LI, Dezhou HU, Wenxin GAO. Knowledge graph multi-hop reasoning model fusing path and subgraph features [J]. Journal of Computer Applications, 2025, 45(1): 32-39. |
| [6] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
| [7] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
| [8] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
| [9] | Heng CHEN, Siyi WANG, Zhengguang LI, Guanyu LI, Xin LIU. Capsule network knowledge graph embedding model based on relational memory [J]. Journal of Computer Applications, 2022, 42(7): 1985-1992. |
| [10] | Jing ZHAO, Jingyu HAN, Long QIAN, Yi MAO. ECG diagnostic classification based on improved RAKEL algorithm [J]. Journal of Computer Applications, 2022, 42(6): 1892-1897. |
| [11] | Junhua GU, Rui WANG, Ningning LI, Suqi ZHANG. Knowledge graph attention network fusing collaborative filtering information [J]. Journal of Computer Applications, 2022, 42(4): 1087-1092. |
| [12] | Wenjing JIANG, Xi XIONG, Zhongzhi LI, Binyong LI. Recommendation system based on non-sampling collaborative knowledge graph network [J]. Journal of Computer Applications, 2022, 42(4): 1057-1064. |
| [13] | TIAN Ling, ZHANG Jinchuan, ZHANG Jinhao, ZHOU Wangtao, ZHOU Xue. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory [J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. |
| [14] | LIU Huan, LI Xiaoge, HU Likun, HU Feixiong, WANG Penghua. Knowledge graph driven recommendation model of graph neural network [J]. Journal of Computer Applications, 2021, 41(7): 1865-1870. |
| [15] | SUN Jianqiang, XU Shaohua. Knowledge reasoning method based on differentiable neural computer and Bayesian network [J]. Journal of Computer Applications, 2021, 41(2): 337-342. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||