Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1086-1094.DOI: 10.11772/j.issn.1001-9081.2024010132
• Artificial intelligence • Previous Articles Next Articles
Qingli CHEN(), Yuanbo GUO, Chen FANG
Received:
2024-02-05
Revised:
2024-04-04
Accepted:
2024-04-07
Online:
2024-05-09
Published:
2025-04-10
Contact:
Qingli CHEN
About author:
CHEN Qingli, born in 1998, M. S. candidate. His research interests include federated learning.通讯作者:
陈庆礼
作者简介:
陈庆礼(1998—),男,河南新乡人,硕士研究生,主要研究方向:联邦学习CLC Number:
Qingli CHEN, Yuanbo GUO, Chen FANG. Clustering federated learning algorithm for heterogeneous data[J]. Journal of Computer Applications, 2025, 45(4): 1086-1094.
陈庆礼, 郭渊博, 方晨. 面向数据异构的聚类联邦学习算法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1086-1094.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010132
K | FMNIST | CIFAR10 | Rotated CIFAR10 | MNIST( |
---|---|---|---|---|
2 | 7.84 | 9.18 | 14.86 | 5.53 |
3 | 6.45 | 6.85 | 9.68 | 5.69 |
4 | 4.94 | 6.41 | 8.85 | 5.25 |
5 | 4.46 | 6.23 | 9.43 | 4.63 |
6 | 4.09 | 5.90 | 9.59 | 4.31 |
7 | 3.86 | 5.62 | 15.16 | 4.42 |
8 | 3.63 | 5.83 | 13.22 | 4.28 |
9 | 3.43 | 5.94 | 14.13 | 4.16 |
10 | 3.47 | 6.79 | 11.92 | 4.62 |
Tab. 1 Calinski-Harabasz index values under different K values
K | FMNIST | CIFAR10 | Rotated CIFAR10 | MNIST( |
---|---|---|---|---|
2 | 7.84 | 9.18 | 14.86 | 5.53 |
3 | 6.45 | 6.85 | 9.68 | 5.69 |
4 | 4.94 | 6.41 | 8.85 | 5.25 |
5 | 4.46 | 6.23 | 9.43 | 4.63 |
6 | 4.09 | 5.90 | 9.59 | 4.31 |
7 | 3.86 | 5.62 | 15.16 | 4.42 |
8 | 3.63 | 5.83 | 13.22 | 4.28 |
9 | 3.43 | 5.94 | 14.13 | 4.16 |
10 | 3.47 | 6.79 | 11.92 | 4.62 |
数据类型 | Client ID | 数据类型 | Client ID |
---|---|---|---|
Amazon | 1,2,3,4,5 | Webcam | 11,12,13,14,15 |
DSLR | 6,7,8,9,10 | Caltech | 16,17,18,19,20 |
Tab. 2 Client data division of Office-Caltech10 dataset
数据类型 | Client ID | 数据类型 | Client ID |
---|---|---|---|
Amazon | 1,2,3,4,5 | Webcam | 11,12,13,14,15 |
DSLR | 6,7,8,9,10 | Caltech | 16,17,18,19,20 |
算法 | FMNIST | CIFAR10 | Rotated CIFAR10 | MNIST( |
---|---|---|---|---|
Local | 82.13 | 46.03 | 26.30 | 98.23 |
FedAvg | 82.01 | 48.36 | 26.83 | 66.65 |
FedProx | 83.06 | 50.86 | 27.02 | 69.32 |
FedGen | 81.25 | 47.21 | 27.33 | 65.47 |
CFLFD | 83.61 | 51.98 | 27.89 | 70.12 |
Tab. 3 Accuracy comparison of different algorithms
算法 | FMNIST | CIFAR10 | Rotated CIFAR10 | MNIST( |
---|---|---|---|---|
Local | 82.13 | 46.03 | 26.30 | 98.23 |
FedAvg | 82.01 | 48.36 | 26.83 | 66.65 |
FedProx | 83.06 | 50.86 | 27.02 | 69.32 |
FedGen | 81.25 | 47.21 | 27.33 | 65.47 |
CFLFD | 83.61 | 51.98 | 27.89 | 70.12 |
算法 | Amazon | DSLR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
client1 | client2 | client3 | client4 | client5 | client6 | client7 | client8 | client9 | client10 | |
Local Tai | 61.66 | 63.75 | 64.16 | 62.50 | 62.91 | 72.50 | 67.50 | 62.50 | 65.00 | 67.50 |
FedAvg | 65.83 | 65.83 | 63.33 | 64.16 | 64.16 | 62.50 | 65.00 | 62.50 | 62.50 | 67.50 |
FedProx | 62.08 | 62.50 | 61.66 | 63.33 | 62.50 | 70.00 | 67.50 | 67.50 | 67.50 | 67.50 |
FedGen | 64.16 | 62.91 | 62.50 | 63.75 | 63.75 | 67.50 | 67.50 | 62.50 | 67.50 | 65.00 |
CFLFD | 66.66 | 68.33 | 68.33 | 67.50 | 66.25 | 72.50 | 75.00 | 72.50 | 72.50 | 75.00 |
算法 | Webcam | Caltech | ||||||||
client11 | client12 | client13 | client14 | client15 | client16 | client17 | client18 | client19 | client20 | |
Local | 67.56 | 68.91 | 72.97 | 70.27 | 67.56 | 41.99 | 44.83 | 41.28 | 40.21 | 37.36 |
FedAvg | 68.91 | 66.21 | 68.91 | 67.56 | 70.27 | 44.48 | 44.48 | 45.19 | 45.19 | 44.48 |
FedProx | 78.37 | 78.37 | 79.72 | 82.43 | 77.02 | 42.70 | 44.12 | 41.28 | 42.70 | 41.99 |
FedGen | 75.67 | 78.37 | 77.02 | 77.02 | 74.32 | 37.36 | 36.29 | 38.07 | 39.14 | 37.72 |
CFLFD | 79.72 | 79.72 | 81.08 | 83.78 | 82.43 | 44.83 | 45.19 | 44.83 | 45.55 | 44.12 |
Tab. 4 Accuracy comparison of different client nodes on Office-Caltech10 dataset
算法 | Amazon | DSLR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
client1 | client2 | client3 | client4 | client5 | client6 | client7 | client8 | client9 | client10 | |
Local Tai | 61.66 | 63.75 | 64.16 | 62.50 | 62.91 | 72.50 | 67.50 | 62.50 | 65.00 | 67.50 |
FedAvg | 65.83 | 65.83 | 63.33 | 64.16 | 64.16 | 62.50 | 65.00 | 62.50 | 62.50 | 67.50 |
FedProx | 62.08 | 62.50 | 61.66 | 63.33 | 62.50 | 70.00 | 67.50 | 67.50 | 67.50 | 67.50 |
FedGen | 64.16 | 62.91 | 62.50 | 63.75 | 63.75 | 67.50 | 67.50 | 62.50 | 67.50 | 65.00 |
CFLFD | 66.66 | 68.33 | 68.33 | 67.50 | 66.25 | 72.50 | 75.00 | 72.50 | 72.50 | 75.00 |
算法 | Webcam | Caltech | ||||||||
client11 | client12 | client13 | client14 | client15 | client16 | client17 | client18 | client19 | client20 | |
Local | 67.56 | 68.91 | 72.97 | 70.27 | 67.56 | 41.99 | 44.83 | 41.28 | 40.21 | 37.36 |
FedAvg | 68.91 | 66.21 | 68.91 | 67.56 | 70.27 | 44.48 | 44.48 | 45.19 | 45.19 | 44.48 |
FedProx | 78.37 | 78.37 | 79.72 | 82.43 | 77.02 | 42.70 | 44.12 | 41.28 | 42.70 | 41.99 |
FedGen | 75.67 | 78.37 | 77.02 | 77.02 | 74.32 | 37.36 | 36.29 | 38.07 | 39.14 | 37.72 |
CFLFD | 79.72 | 79.72 | 81.08 | 83.78 | 82.43 | 44.83 | 45.19 | 44.83 | 45.55 | 44.12 |
算法 | Amazon | DSLR | Webcam | Caltech | 平均 |
---|---|---|---|---|---|
Local | 62.99 | 67.00 | 69.45 | 41.13 | 60.14 |
FedAvg | 64.66 | 64.00 | 68.37 | 44.76 | 60.44 |
FedProx | 62.41 | 68.00 | 79.18 | 42.55 | 63.03 |
FedGen | 63.41 | 66.00 | 76.48 | 37.71 | 60.90 |
CFLFD | 67.41 | 73.50 | 81.34 | 44.90 | 66.79 |
Tab. 5 Average accuracies on of different data domains
算法 | Amazon | DSLR | Webcam | Caltech | 平均 |
---|---|---|---|---|---|
Local | 62.99 | 67.00 | 69.45 | 41.13 | 60.14 |
FedAvg | 64.66 | 64.00 | 68.37 | 44.76 | 60.44 |
FedProx | 62.41 | 68.00 | 79.18 | 42.55 | 63.03 |
FedGen | 63.41 | 66.00 | 76.48 | 37.71 | 60.90 |
CFLFD | 67.41 | 73.50 | 81.34 | 44.90 | 66.79 |
1 | RUSSELL S J, NORVIG P. Artificial intelligence a modern approach [M]. 4th ed. Hoboken, NJ: Pearson Education, Inc., 2021. |
2 | ZHANG Q, CHENG L, BOUTABA R. Cloud computing: state-of-the-art and research challenges [J]. Journal of Internet Services and Applications, 2010, 1: 7-18. |
3 | ZHU Q, WANG R, CHEN Q, et al. IOT gateway: BridgingWireless sensor networks into internet of things [C]// Proceedings of the 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing. Piscataway: IEEE, 2010: 347-352. |
4 | YIN C, XIONG Z, CHEN H, et al. A literature survey on smart cities [J]. SCIENCE CHINA Information Sciences, 2015, 58 (10): No.100102. |
5 | LIU Y, YU J J Q, KANG J, et al. Privacy-preserving traffic flow prediction: a federated learning approach [J]. IEEE Internet of Things Journal, 2020, 7 (8): 7751-7763. |
6 | 杨强. 联邦学习: 人工智能的最后一公里 [J]. 智能系统学报, 2020, 15 (1): 183-186. |
YANG Q. Federated learning: the last on kilometer of artificial intelligence [J]. CAAI Transactions on Intelligent Systems, 2020, 15 (1): 183-186. | |
7 | KANG J, XIONG Z, NIYATO D, et al. Reliable federated learning for mobile networks [J]. IEEE Wireless Communications, 2020, 27 (2): 72-80. |
8 | 杨强. AI 与数据隐私保护: 联邦学习的破解之道 [J]. 信息安全研究, 2019, 5 (11): 961-965. |
YANG Q. AI and data privacy protection: the way to federated learning [J]. Journal of Information Security Research, 2019, 5 (11): 961-965. | |
9 | KHAN L U, YAQOOB I, TRAN N H, et al. Edge-computing-enabled smart cities: a comprehensive survey [J]. IEEE Internet of Things Journal, 2020, 7 (10): 10200-10232. |
10 | VOIGT P, VON DEM BUSSCHE A. The EU General Data Protection Regulation (GDPR): a practical guide [M]. 2nd ed. Cham: Springer, 2024. |
11 | DEAN J, CORRADO G S, MONGA R, et al. Large scale distributed deep networks [C]// Proceedings of the 25th International Conference on Neural Information Processing Systems — Volume 1. Red Hook: Curran Associates Inc., 2012: 1223-1231. |
12 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]// Proceedings of the 20th Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. |
13 | WANG K, MATHEWS R, KIDDON C, et al. Federated evaluation of on-device personalization [EB/OL]. [2023-10-10]. . |
14 | ACAR D A E, ZHAO Y, NAVARRO R M, et al. Federated learning based on dynamic regularization [EB/OL]. [2023-10-12]. . |
15 | YU T, BAGDASARYAN E, SHMATIKOV V. Salvaging federated learning by local adaptation [EB/OL]. [2023-08-10]. . |
16 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network [EB/OL]. [2023-08-15]. . |
17 | KARIMIREDDY S P, KALE S, MOHRI M, et al. SCAFFOLD: stochastic controlled averaging for federated learning [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 5132-5143. |
18 | WANG J, LIU Q, LIANG H, et al. Tackling the objective inconsistency problem in heterogeneous federated optimization [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 7611-7623. |
19 | LI T, HU S, BEIRAMI A, et al. Ditto: fair and robust federated learning through personalization [C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 6357-6368. |
20 | FALLAH A, MOKHTARI A, OZDAGLAR A. Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 3557-3568. |
21 | LI X, JIANG M, ZHANG X, et al. FedBN: federated learning on non-IID features via local batch normalization [EB/OL]. [2023-09-02]. . |
22 | DENG Y, KAMANI M M, MAHDAVI M. Adaptive personalized federated learning [EB/OL]. [2023-09-12]. . |
23 | XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms [EB/OL]. [2023-11-10]. . |
24 | KRIZHEVSKY A. Learning multiple layers of features from tiny images [R/OL]. [2024-01-06]. . |
25 | DENG L. The MNIST database of handwritten digit images for machine learning research [best of the web] [J]. IEEE Signal Processing Magazine, 2012, 29 (6): 141-142. |
26 | GONG B, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation [C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2066-2073. |
27 | LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks [EB/OL]. [2023-10-10]. . |
28 | ZHU Z, HONG J, ZHOU J. Data-free knowledge distillation for heterogeneous federated learning [C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 12878-12889. |
[1] | Yu WANG, Xianjin FANG, Gaoming YANG, Yifeng DING, Xinlu YANG. Active defense against face forgery based on attention mask and feature extraction [J]. Journal of Computer Applications, 2025, 45(3): 904-910. |
[2] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
[3] | Qiurun HE, Jie HU, Bo PENG, Tianyuan LI. Fabric defect detection algorithm based on context information and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(2): 640-646. |
[4] | Shufen ZHANG, Hongyang ZHANG, Zhiqiang REN, Xuebin CHEN. Survey of fairness in federated learning [J]. Journal of Computer Applications, 2025, 45(1): 1-14. |
[5] | Zhuoyue OU, Xiuqin DENG, Lei CHEN. Self-adaptive multi-view clustering algorithm with complementarity based on weighted anchors [J]. Journal of Computer Applications, 2025, 45(1): 115-126. |
[6] | Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling [J]. Journal of Computer Applications, 2025, 45(1): 214-222. |
[7] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[8] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[9] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. |
[10] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
[11] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[12] | Qing WANG, Jieyu ZHAO, Xulun YE, Nongxiao WANG. Enhanced deep subspace clustering method with unified framework [J]. Journal of Computer Applications, 2024, 44(7): 1995-2003. |
[13] | Junchi GE, Weihua ZHAO. Distance weighted discriminant analysis based on robust principal component analysis for matrix data [J]. Journal of Computer Applications, 2024, 44(7): 2073-2079. |
[14] | Wudan LONG, Bo PENG, Jie HU, Ying SHEN, Danni DING. Road damage detection algorithm based on enhanced feature extraction [J]. Journal of Computer Applications, 2024, 44(7): 2264-2270. |
[15] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||