Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1120-1129.DOI: 10.11772/j.issn.1001-9081.2024040415
• Artificial intelligence • Previous Articles Next Articles
Kunyuan JIANG1, Xiaoxia LI1,2(), Li WANG3, Yaodan CAO3, Xiaoqiang ZHANG1,2, Nan DING1, Yingyue ZHOU1,2
Received:
2024-04-11
Revised:
2024-06-26
Accepted:
2024-06-28
Online:
2025-04-08
Published:
2025-04-10
Contact:
Xiaoxia LI
About author:
JIANG Kunyuan, born in 2000, M. S. candidate. Her research interests include pattern recognition, medical image processing.Supported by:
姜坤元1, 李小霞1,2(), 王利3, 曹耀丹3, 张晓强1,2, 丁楠1, 周颖玥1,2
通讯作者:
李小霞
作者简介:
姜坤元(2000—),女,山东淄博人,硕士研究生,CCF会员,主要研究方向:模式识别、医学图像处理基金资助:
CLC Number:
Kunyuan JIANG, Xiaoxia LI, Li WANG, Yaodan CAO, Xiaoqiang ZHANG, Nan DING, Yingyue ZHOU. Boundary-cross supervised semantic segmentation network with decoupled residual self-attention[J]. Journal of Computer Applications, 2025, 45(4): 1120-1129.
姜坤元, 李小霞, 王利, 曹耀丹, 张晓强, 丁楠, 周颖玥. 引入解耦残差自注意力的边界交叉监督语义分割网络[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1120-1129.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040415
图像类型 | 训练集样本数 | 验证集样本数 | 测试集样本数 | 总数 |
---|---|---|---|---|
皮肤镜图像 | 2 047 | 260 | 260 | 2 567 |
结肠镜图像 | 1 450 | 162 | 160 | 1 772 |
食管内镜图像 | 2 552 | 310 | 310 | 3 172 |
Tab. 1 Number of each experimental dataset
图像类型 | 训练集样本数 | 验证集样本数 | 测试集样本数 | 总数 |
---|---|---|---|---|
皮肤镜图像 | 2 047 | 260 | 260 | 2 567 |
结肠镜图像 | 1 450 | 162 | 160 | 1 772 |
食管内镜图像 | 2 552 | 310 | 310 | 3 172 |
网络类型 | 网络 | mIoU/% | Dice/% | 计算量/GFLOPs | 参数量/106 | 帧率/(frame·s-1) |
---|---|---|---|---|---|---|
CNN | U-net | 80.09 | 87.19 | 226.15 | 24.89 | 20 |
DeepLabV3+ | 79.80 | 88.53 | 264.60 | 70.07 | 12 | |
U2-Net | 74.43 | 83.31 | 150.61 | 43.99 | 18 | |
EGE-UNet | 63.40 | 75.46 | 0.28 | 0.04 | 26 | |
Transformer+CNN | MedT | 68.55 | 76.92 | 70.89 | 10.80 | 24 |
TransUnet | 81.21 | 87.86 | 129.29 | 93.23 | 14 | |
UCTransNet | 78.81 | 86.90 | 172.01 | 66.24 | 12 | |
BCS-SegNet | 82.73 | 90.84 | 232.71 | 24.98 | 19 |
Tab. 2 Comparison of results of different networks on self-built esophageal endoscopy dataset
网络类型 | 网络 | mIoU/% | Dice/% | 计算量/GFLOPs | 参数量/106 | 帧率/(frame·s-1) |
---|---|---|---|---|---|---|
CNN | U-net | 80.09 | 87.19 | 226.15 | 24.89 | 20 |
DeepLabV3+ | 79.80 | 88.53 | 264.60 | 70.07 | 12 | |
U2-Net | 74.43 | 83.31 | 150.61 | 43.99 | 18 | |
EGE-UNet | 63.40 | 75.46 | 0.28 | 0.04 | 26 | |
Transformer+CNN | MedT | 68.55 | 76.92 | 70.89 | 10.80 | 24 |
TransUnet | 81.21 | 87.86 | 129.29 | 93.23 | 14 | |
UCTransNet | 78.81 | 86.90 | 172.01 | 66.24 | 12 | |
BCS-SegNet | 82.73 | 90.84 | 232.71 | 24.98 | 19 |
网络类型 | 方法 | ISIC2018 | Kvasir-SEG/CVC-ClinicDB | 计算量/GFLOPs | 参数量/106 | ||
---|---|---|---|---|---|---|---|
mIoU/% | Dice/% | mIoU/% | Dice/% | ||||
CNN | U-net | 77.28 | 87.15 | 78.48 | 87.63 | 226.15 | 24.89 |
UPerNet | 77.37 | 89.39 | 75.44 | 84.18 | 30.73 | 27.39 | |
UNeXt | 72.27 | 82.52 | 75.96 | 86.19 | 2.30 | 1.47 | |
EGE-UNet | 80.12 | 88.96 | 68.97 | 81.64 | 0.28 | 0.04 | |
Transformer+CNN | MedT | 71.19 | 82.41 | 76.79 | 84.32 | 70.89 | 10.80 |
BCS-SegNet | 84.27 | 90.68 | 79.24 | 87.91 | 232.70 | 24.98 |
Tab. 3 Comparison of results of different networks on public datasets
网络类型 | 方法 | ISIC2018 | Kvasir-SEG/CVC-ClinicDB | 计算量/GFLOPs | 参数量/106 | ||
---|---|---|---|---|---|---|---|
mIoU/% | Dice/% | mIoU/% | Dice/% | ||||
CNN | U-net | 77.28 | 87.15 | 78.48 | 87.63 | 226.15 | 24.89 |
UPerNet | 77.37 | 89.39 | 75.44 | 84.18 | 30.73 | 27.39 | |
UNeXt | 72.27 | 82.52 | 75.96 | 86.19 | 2.30 | 1.47 | |
EGE-UNet | 80.12 | 88.96 | 68.97 | 81.64 | 0.28 | 0.04 | |
Transformer+CNN | MedT | 71.19 | 82.41 | 76.79 | 84.32 | 70.89 | 10.80 |
BCS-SegNet | 84.27 | 90.68 | 79.24 | 87.91 | 232.70 | 24.98 |
实验编号 | 网络 | mIoU/% | Dice/% |
---|---|---|---|
1 | U-net | 80.09 | 87.19 |
2 | +DRA | 81.33 | 88.24 |
3 | +CLF | 80.61 | 88.12 |
4 | +BSD | 82.70 | 90.72 |
5 | +DRA、CLF | 81.52 | 88.31 |
6 | +DRA、CLF、BSD(BCS-SegNet) | 82.73 | 90.84 |
Tab. 4 Ablation experimental results for each module
实验编号 | 网络 | mIoU/% | Dice/% |
---|---|---|---|
1 | U-net | 80.09 | 87.19 |
2 | +DRA | 81.33 | 88.24 |
3 | +CLF | 80.61 | 88.12 |
4 | +BSD | 82.70 | 90.72 |
5 | +DRA、CLF | 81.52 | 88.31 |
6 | +DRA、CLF、BSD(BCS-SegNet) | 82.73 | 90.84 |
f1 | f2 | f3 | f4 | f5 | mIoU/% | Dice/% | 计算量/GFLOPs | 参数量/106 |
---|---|---|---|---|---|---|---|---|
√ | 81.47 | 88.36 | 235.48 | 24.91 | ||||
√ | 81.33 | 88.24 | 232.30 | 24.98 | ||||
√ | 80.19 | 87.35 | 231.76 | 25.23 | ||||
√ | 80.16 | 86.96 | 231.42 | 26.21 | ||||
√ | 79.44 | 85.87 | 227.52 | 26.21 |
Tab. 5 Ablation experimental results of decoupled residual self-attention
f1 | f2 | f3 | f4 | f5 | mIoU/% | Dice/% | 计算量/GFLOPs | 参数量/106 |
---|---|---|---|---|---|---|---|---|
√ | 81.47 | 88.36 | 235.48 | 24.91 | ||||
√ | 81.33 | 88.24 | 232.30 | 24.98 | ||||
√ | 80.19 | 87.35 | 231.76 | 25.23 | ||||
√ | 80.16 | 86.96 | 231.42 | 26.21 | ||||
√ | 79.44 | 85.87 | 227.52 | 26.21 |
编号 | 融合策略 | mIoU/% | Dice/% |
---|---|---|---|
1 | 融合 | 80.61 | 88.12 |
2 | 融合 | 80.38 | 87.54 |
3 | 融合 | 79.43 | 86.39 |
Tab. 6 Ablation experimental results of cross level fusion
编号 | 融合策略 | mIoU/% | Dice/% |
---|---|---|---|
1 | 融合 | 80.61 | 88.12 |
2 | 融合 | 80.38 | 87.54 |
3 | 融合 | 79.43 | 86.39 |
1 | 董育宁,刘天亮,戴修斌,等. 医学图像处理理论与应用[M]. 南京:东南大学出版社, 2020: 44-54. |
DONG Y N, LIU T L, DAI X B, et al. Medical image processing theory and applications[M]. Nanjing: Southeast University Press, 2020: 44-54. | |
2 | 窦猛,陈哲彬,王辛,等. 基于深度学习的多模态医学图像分割综述[J]. 计算机应用, 2023, 43(11):3385-3395. |
DOU M, CHEN Z B, WANG X, et al. Review of multi-modal medical image segmentation based on deep learning[J]. Journal of Computer Applications, 2023, 43(11):3385-3395. | |
3 | GONZALEZ R C, WOODS R E. 数字图像处理(第四版)[M]. 阮秋琦,阮宇智,译. 北京:电子工业出版社, 2020: 504-572. |
GONZALEZ R C, WOODS R E. Digital image processing, fourth edition[M]. RUAN Q Q, RUAN Y Z, translated. Beijing: Publishing House of Electronics Industry, 2020: 504-572. | |
4 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
5 | ASGARI TAGHANAKI S, ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images: a review[J]. Artificial Intelligence Review, 2021, 54: 137-178. |
6 | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 833-851. |
7 | XIAO T, LIU Y, ZHOU B, et al. Unified perceptual parsing for scene understanding[C]// Proceedings of 2018 European Conference on Computer Vision, LNCS 11209. Cham: Springer, 2018: 432-448. |
8 | QIN X B, ZHANG Z C, HUANG C Y, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: No.107404. |
9 | VALANARASE J M J, PATEL V M. UNeXt: MLP-based rapid medical image segmentation network[C]// Proceedings of the 2022 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 13435. Cham: Springer, 2022: 23-33. |
10 | D’ASCOLI S, TOUVRON H, LEAVITT M L, et al. ConViT: improving vision Transformers with soft convolutional inductive biases[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 2286-2296. |
11 | AZAD R, KAZEROUNI A, HEIDARI M, et al. Advances in medical image analysis with vision Transformers: a comprehensive review[J]. Medical Image Analysis, 2024, 91: No.103000. |
12 | CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. [2023-11-21].. |
13 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
14 | WANG H, CAO P, WANG J, et al. UCTransnet: rethinking the skip connections in U-Net from a channel-wise perspective with Transformer[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 2441-2449. |
15 | ZHANG Y, LIU H Y, HU Q. TransFuse: fusing Transformers and CNNs for medical image segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 14-24. |
16 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
17 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
18 | VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical Transformer: gated axial-attention for medical image segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 36-46. |
19 | RUAN J, XIE M, GAO J, et al. EGE-UNet: an efficient group enhanced UNet for skin lesion segmentation[C]// Proceedings of the 2023 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 14223. Cham: Springer, 2023: 481-490. |
20 | SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. |
21 | KOKKINOS I. Pushing the boundaries of boundary detection using deep learning[EB/OL]. [2023-11-21].. |
22 | NONG Z, SU X, LIU Y, et al. Boundary-aware dual-stream network for VHR remote sensing images semantic segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5260-5268. |
23 | CONG R, YANG H, JIANG Q, et al. BCS-Net: boundary, context, and semantic for automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.5019011. |
24 | CHEN F L, LIU H L, ZENG Z H, et al. BES-Net: boundary enhancing semantic context network for high-resolution image semantic segmentation[J]. Remote Sensing, 2022, 14(7): No.1638. |
25 | LIN Y, ZHANG D, FANG X, et al. Rethinking boundary detection in deep learning models for medical image segmentation[C]// Proceedings of the 2023 International Conference on Information Processing in Medical Imaging, LNCS 13939. Cham: Springer, 2023: 730-742. |
26 | 傅励瑶,尹梦晓,杨锋. 基于Transformer的U型医学图像分割网络综述[J]. 计算机应用, 2023, 43(5):1584-1595. |
FU L Y, YIN M X, YANG F. Transformer based U-shaped medical image segmentation network: a survey[J]. Journal of Computer Applications, 2023, 43(5):1584-1595. | |
27 | 朱希安,曹林. 小波分析及其在数字图像处理中的应用[M]. 北京:电子工业出版社, 2012: 163-169, 213-221. |
ZHU X A, CAO L. Wavelet analysis and its application in digital image processing[M]. Beijing: Publishing House of Electronics Industry, 2012: 163-169, 213-221. | |
28 | MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]// Proceedings of the 4th International Conference on 3D Vision. Piscataway: IEEE, 2016: 565-571. |
29 | CODELLA N, ROTEMBERG V, TSCHANDL P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the International Skin Imaging Collaboration (ISIC)[EB/OL]. [2023-12-02].. |
30 | JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset[C]// Proceedings of the 2020 International Conference on Multimedia Modeling, LNCS 11962. Cham: Springer, 2020: 451-462. |
31 | TAJBAKHSH N, GURUDU S R, LIANG J. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 630-644. |
32 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2023-12-02].. |
[1] | Baohua YUAN, Jialu CHEN, Huan WANG. Medical image segmentation network integrating multi-scale semantics and parallel double-branch [J]. Journal of Computer Applications, 2025, 45(3): 988-995. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[5] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[6] | Rong HUANG, Junjie SONG, Shubo ZHOU, Hao LIU. Image aesthetic quality evaluation method based on self-supervised vision Transformer [J]. Journal of Computer Applications, 2024, 44(4): 1269-1276. |
[7] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. |
[8] | Xinran LUO, Tianrui LI, Zhen JIA. Chinese medical named entity recognition based on self-attention mechanism and lexicon enhancement [J]. Journal of Computer Applications, 2024, 44(2): 385-392. |
[9] | Ziqi HUANG, Jianpeng HU. Entity category enhanced nested named entity recognition in automotive domain [J]. Journal of Computer Applications, 2024, 44(2): 377-384. |
[10] | Liqing QIU, Xiaopan SU. Personalized multi-layer interest extraction click-through rate prediction model [J]. Journal of Computer Applications, 2024, 44(11): 3411-3418. |
[11] | Cong GU, Qiqiang DUAN, Siyu REN. Polyp segmentation algorithm based on context-aware network [J]. Journal of Computer Applications, 2024, 44(11): 3617-3622. |
[12] | Xingyao YANG, Hongtao SHEN, Zulian ZHANG, Jiong YU, Jiaying CHEN, Dongxiao WANG. Sequential recommendation based on hierarchical filter and temporal convolution enhanced self-attention network [J]. Journal of Computer Applications, 2024, 44(10): 3090-3096. |
[13] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. |
[14] | Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism [J]. Journal of Computer Applications, 2024, 44(1): 311-317. |
[15] | Li’an CHEN, Yi GUO. Text sentiment analysis model based on individual bias information [J]. Journal of Computer Applications, 2024, 44(1): 145-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||