1 |
JEMAL A, CENTER M M, DeSANTIS C, et al. Global patterns of cancer incidence and mortality rates and trends[J]. Cancer Epidemiology, Biomarkers and Prevention, 2010, 19(8): 1893-1907.
|
2 |
NAYAR R, WILBUR D C. The Bethesda system for reporting cervical cytology: a historical perspective[J]. Acta Cytologica, 2017, 61(4/5): 359-372.
|
3 |
ZHANG L, KONG H, CHIN C T, et al. Segmentation of cytoplasm and nuclei of abnormal cells in cervical cytology using global and local graph cuts[J]. Computerized Medical Imaging and Graphics, 2014, 38(5): 369-380.
|
4 |
KANG J, YANG G. Fast morphological pyramid matching algorithm based on the Hausdorff distance[C]// Proceedings of the 2011 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Piscataway: IEEE, 2011: 288-292.
|
5 |
GENÇTAV A, AKSOY S, ÖNDER S. Unsupervised segmentation and classification of cervical cell images[J]. Pattern Recognition, 2012, 45(12): 4151-4168.
|
6 |
CHANKONG T, THEERA-UMPON N, AUEPHANWIRIYAKUL S. Automatic cervical cell segmentation and classification in Pap smears[J]. Computer Methods and Programs in Biomedicine, 2014, 113(2): 539-556.
|
7 |
LI K, LIU W, YIN J. Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF Snake[J]. Pattern Recognition, 2012, 45(4): 1255-1264.
|
8 |
ZHANG L, LIU S, WANG T, et al. Improved segmentation of abnormal cervical nuclei using a graph-search based approach[C]// Proceedings of the SPIE 9420, SPIE Medical Imaging 2015: Digital Pathology. Bellingham, WA: SPIE, 2015: No.94200W.
|
9 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440.
|
10 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
11 |
SONG Y, ZHANG L, CHEN S, et al. Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(10): 2421-2433.
|
12 |
刘一鸣,张鹏程,刘祎,等. 基于全卷积网络和条件随机场的宫颈癌细胞学图像的细胞核分割[J]. 计算机应用, 2018, 38(11): 3348-3354.
|
|
LIU Y M, ZHANG P C, LIU Y, et al. Segmentation of cervical nuclei based on fully convolutional network and conditional random field[J]. Journal of Computer Applications, 2018, 38(11): 3348-3354.
|
13 |
崔文成,杨丹,邵虹. 基于双路特征的宫颈细胞核分割[J]. 电子测量技术, 2023, 46(6): 129-136.
|
|
CUI W C, YANG D, SHAO H. Cervical nuclear segmentation based on two-path features[J]. Electronic Measurement Technology, 2023, 46(6): 129-136.
|
14 |
张玉琦,李捷,王巍,等. 基于注意力机制的多尺度特征融合网络用于宫颈细胞核分割[J]. 计算机应用, 2022, 42(S2): 259-266.
|
|
ZHANG Y Q, LI J, WANG W, et al. A multi-scale feature fusion network for cervical nucleus segmentation based on attention mechanism[J]. Journal of Computer Applications, 2022, 42(S2): 259-266.
|
15 |
HU H, ZHANG J, YANG T, et al. CNAC-Seg: effective segmentation for cervical nuclei in adherent cells and clusters via exploring gaps of receptive fields[J]. Biomedical Signal Processing and Control, 2024, 90: No.105833.
|
16 |
BANDYOPADHYAY H, NASIPURI M. Segmentation of pap smear images for cervical cancer detection[C]// Proceedings of the 2020 IEEE Calcutta Conference. Piscataway: IEEE, 2020: 30-33.
|
17 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
|
18 |
HE K, SUN J, TANG X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.
|
19 |
YIN P, YUAN R, CHENG Y, et al. Deep guidance network for biomedical image segmentation[J]. IEEE Access, 2020, 8: 116106-116116.
|
20 |
ZIJDENBOS A P, DAWANT B M, MARGOLIN R A, et al. Morphometric analysis of white matter lesions in MR images: method and validation[J]. IEEE Transactions on Medical Imaging, 1994, 13(4): 716-724.
|
21 |
ZHAO J, DAI L, ZHANG M, et al. PGU-net+: progressive growing of U-net+ for automated cervical nuclei segmentation[C]// Proceedings of the 2019 Multiscale Multimodal Medical Imaging, LNCS 11977. Cham: Springer, 2020: 51-58.
|
22 |
ZHAO Y, FU C, XU S, et al. LFANet: lightweight feature attention network for abnormal cell segmentation in cervical cytology images[J]. Computers in Biology and Medicine, 2022, 145: No.105500.
|
23 |
CHOWDARY G J, SUGANYA G, PREMALATHA M, et al. Nucleus segmentation and classification using residual SE-UNet and feature concatenation approach incervical cytopathology cell images[J]. Technology in Cancer Research and Treatment, 2023, 22: No.15330338221134833.
|