Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1496-1503.DOI: 10.11772/j.issn.1001-9081.2024050676
• Artificial intelligence • Previous Articles
Jie HU1,2,3, Cui WU1, Jun SUN1,2,3(), Yan ZHANG1,2,3
Received:
2024-05-27
Revised:
2024-08-28
Accepted:
2024-08-30
Online:
2024-09-05
Published:
2025-05-10
Contact:
Jun SUN
About author:
HU Jie, born in 1977, Ph. D., professor. Her research interests include complex semantic big data management, natural language processing.Supported by:
胡婕1,2,3, 吴翠1, 孙军1,2,3(), 张龑1,2,3
通讯作者:
孙军
作者简介:
胡婕(1977—),女,湖北汉川人,教授,博士,主要研究方向:复杂语义大数据管理、自然语言处理基金资助:
CLC Number:
Jie HU, Cui WU, Jun SUN, Yan ZHANG. Document-level relation extraction model based on anaphora and logical reasoning[J]. Journal of Computer Applications, 2025, 45(5): 1496-1503.
胡婕, 吴翠, 孙军, 张龑. 基于回指与逻辑推理的文档级关系抽取模型[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1496-1503.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050676
数据集 | 集合 | 文档数 | 平均 实体数 | 平均 元组数 | 平均 句子数 |
---|---|---|---|---|---|
DocRED | train | 3 053 | 19.5 | 12.5 | 7.9 |
dev | 1 000 | 19.6 | 12.3 | 8.1 | |
Re-DocRED | train | 3 053 | 19.4 | 28.1 | 7.9 |
dev | 500 | 19.4 | 34.6 | 8.2 | |
test | 500 | 19.6 | 34.9 | 7.9 |
Tab. 1 Experimental datasets description
数据集 | 集合 | 文档数 | 平均 实体数 | 平均 元组数 | 平均 句子数 |
---|---|---|---|---|---|
DocRED | train | 3 053 | 19.5 | 12.5 | 7.9 |
dev | 1 000 | 19.6 | 12.3 | 8.1 | |
Re-DocRED | train | 3 053 | 19.4 | 28.1 | 7.9 |
dev | 500 | 19.4 | 34.6 | 8.2 | |
test | 500 | 19.6 | 34.9 | 7.9 |
数据集 | 编码器 | 训练轮数 | 学习率/10-4 | 批量大小 | 逻辑规则 置信度 | 证据损失 比率 |
---|---|---|---|---|---|---|
DocRED | BERT | 30 | 0.5 | 4 | 0.70 | 0.10 |
RoBERTa | 30 | 0.3 | 4 | 0.70 | 0.10 | |
Re-DocRED | RoBERTa | 30 | 0.3 | 4 | 0.65 | 0.05 |
Tab. 2 Parameter setting
数据集 | 编码器 | 训练轮数 | 学习率/10-4 | 批量大小 | 逻辑规则 置信度 | 证据损失 比率 |
---|---|---|---|---|---|---|
DocRED | BERT | 30 | 0.5 | 4 | 0.70 | 0.10 |
RoBERTa | 30 | 0.3 | 4 | 0.70 | 0.10 | |
Re-DocRED | RoBERTa | 30 | 0.3 | 4 | 0.65 | 0.05 |
编码器 | 模型 | 开发集 | 测试集 | ||||
---|---|---|---|---|---|---|---|
IgnF1 | F1 | EviF1 | IgnF1 | F1 | EviF1 | ||
BERT | ATLOP[ | 59.22 | 61.09 | — | 59.31 | 61.30 | — |
E2GRE[ | 55.22 | 58.72 | 47.12 | — | — | — | |
DocuNet[ | 59.86 | 61.83 | — | 59.93 | 61.86 | — | |
CorefDRE[ | 60.78 | 60.82 | 54.54 | 56.96 | |||
SAIS[ | 59.98 | 62.96 | 53.70 | 60.96 | 62.77 | 52.88 | |
Eider[ | 60.51 | 62.48 | 50.71 | 60.42 | 62.47 | 51.27 | |
DREEAM[ | 60.51 | 62.55 | 52.08 | 60.03 | 62.49 | 51.71 | |
AA[ | 61.31 | 63.38 | — | 60.84 | 63.10 | — | |
本文模型 | 61.43 | 63.54 | 52.53 | 61.10 | 63.39 | 52.66 | |
RoBERTa | ATLOP[ | 61.32 | 63.18 | — | 61.39 | 63.40 | — |
E2GRE[ | — | — | — | 60.30 | 62.50 | 50.5 | |
DocuNet[ | 62.23 | 64.12 | — | 62.39 | 64.55 | — | |
SAIS[ | 62.23 | 65.17 | 55.84 | 63.44 | 65.11 | 55.67 | |
Eider[ | 62.34 | 64.27 | 52.54 | 62.85 | 64.79 | 53.01 | |
DREEAM[ | 62.29 | 64.20 | 54.15 | 62.12 | 64.27 | 54.01 | |
AA[ | 63.15 | 65.19 | — | 62.88 | 64.98 | — | |
本文模型 | 63.37 | 65.35 | 54.77 | 63.01 | 65.30 | 54.58 |
Tab. 3 Performance comparison of different models on DocRED dataset
编码器 | 模型 | 开发集 | 测试集 | ||||
---|---|---|---|---|---|---|---|
IgnF1 | F1 | EviF1 | IgnF1 | F1 | EviF1 | ||
BERT | ATLOP[ | 59.22 | 61.09 | — | 59.31 | 61.30 | — |
E2GRE[ | 55.22 | 58.72 | 47.12 | — | — | — | |
DocuNet[ | 59.86 | 61.83 | — | 59.93 | 61.86 | — | |
CorefDRE[ | 60.78 | 60.82 | 54.54 | 56.96 | |||
SAIS[ | 59.98 | 62.96 | 53.70 | 60.96 | 62.77 | 52.88 | |
Eider[ | 60.51 | 62.48 | 50.71 | 60.42 | 62.47 | 51.27 | |
DREEAM[ | 60.51 | 62.55 | 52.08 | 60.03 | 62.49 | 51.71 | |
AA[ | 61.31 | 63.38 | — | 60.84 | 63.10 | — | |
本文模型 | 61.43 | 63.54 | 52.53 | 61.10 | 63.39 | 52.66 | |
RoBERTa | ATLOP[ | 61.32 | 63.18 | — | 61.39 | 63.40 | — |
E2GRE[ | — | — | — | 60.30 | 62.50 | 50.5 | |
DocuNet[ | 62.23 | 64.12 | — | 62.39 | 64.55 | — | |
SAIS[ | 62.23 | 65.17 | 55.84 | 63.44 | 65.11 | 55.67 | |
Eider[ | 62.34 | 64.27 | 52.54 | 62.85 | 64.79 | 53.01 | |
DREEAM[ | 62.29 | 64.20 | 54.15 | 62.12 | 64.27 | 54.01 | |
AA[ | 63.15 | 65.19 | — | 62.88 | 64.98 | — | |
本文模型 | 63.37 | 65.35 | 54.77 | 63.01 | 65.30 | 54.58 |
模型 | IgnF1 | F1 | 模型 | IgnF1 | F1 |
---|---|---|---|---|---|
ATLOP | 76.94 | 77.73 | AA | 80.12 | 81.20 |
DocuNet | 77.27 | 77.92 | 本文模型 | 82.13 | 83.26 |
DREEAM | 79.66 | 80.73 |
Tab. 4 Performance comparison of different models on Re-DocRED test set
模型 | IgnF1 | F1 | 模型 | IgnF1 | F1 |
---|---|---|---|---|---|
ATLOP | 76.94 | 77.73 | AA | 80.12 | 81.20 |
DocuNet | 77.27 | 77.92 | 本文模型 | 82.13 | 83.26 |
DREEAM | 79.66 | 80.73 |
模型 | F1 | IgnF1 | EviF1 |
---|---|---|---|
本文模型 | 63.54 | 61.43 | 52.53 |
-关系回指图中 的信息聚合层 | 63.29 | 61.23 | 52.45 |
-关系回指图 | 62.89 | 60.88 | 51.52 |
-逻辑规则 | 63.02 | 60.94 | 52.01 |
-加权长尾损失函数 | 63.25 | 61.16 | 52.48 |
Tab. 5 Ablation experimental results based on BERT
模型 | F1 | IgnF1 | EviF1 |
---|---|---|---|
本文模型 | 63.54 | 61.43 | 52.53 |
-关系回指图中 的信息聚合层 | 63.29 | 61.23 | 52.45 |
-关系回指图 | 62.89 | 60.88 | 51.52 |
-逻辑规则 | 63.02 | 60.94 | 52.01 |
-加权长尾损失函数 | 63.25 | 61.16 | 52.48 |
模型 | Inter-F1 | Intra-F1 |
---|---|---|
本文模型 | 56.34 | 68.44 |
-关系回指图 | 55.51 | 68.21 |
Tab. 6 Influence of anaphor-aware relation graph ablation on Inter-F1 and Intra-F1 values
模型 | Inter-F1 | Intra-F1 |
---|---|---|
本文模型 | 56.34 | 68.44 |
-关系回指图 | 55.51 | 68.21 |
损失函数 | 频繁类 | 长尾类 | 整体 |
---|---|---|---|
加权长尾损失函数 | 64.26 | 39.75 | 63.54 |
ATL | 64.23 | 39.01 | 63.26 |
Tab. 7 F1 values for loss function ablation experiments
损失函数 | 频繁类 | 长尾类 | 整体 |
---|---|---|---|
加权长尾损失函数 | 64.26 | 39.75 | 63.54 |
ATL | 64.23 | 39.01 | 63.26 |
置信度 | DocRED | Re-DocRED | ||
---|---|---|---|---|
F1/% | IgnF1/% | F1/% | IgnF1/% | |
0.55 | 64.88 | 62.95 | 82.79 | 81.71 |
0.60 | 64.92 | 63.01 | 82.97 | 81.87 |
0.65 | 65.13 | 63.21 | 83.26 | 82.13 |
0.70 | 65.35 | 63.37 | 83.15 | 82.02 |
0.75 | 65.21 | 63.21 | 83.10 | 81.86 |
0.80 | 65.11 | 63.18 | 83.01 | 81.79 |
Tab. 8 Performance comparison for different rule confidence values
置信度 | DocRED | Re-DocRED | ||
---|---|---|---|---|
F1/% | IgnF1/% | F1/% | IgnF1/% | |
0.55 | 64.88 | 62.95 | 82.79 | 81.71 |
0.60 | 64.92 | 63.01 | 82.97 | 81.87 |
0.65 | 65.13 | 63.21 | 83.26 | 82.13 |
0.70 | 65.35 | 63.37 | 83.15 | 82.02 |
0.75 | 65.21 | 63.21 | 83.10 | 81.86 |
0.80 | 65.11 | 63.18 | 83.01 | 81.79 |
1 | 李冬梅,张扬,李东远,等.实体关系抽取方法研究综述[J].计算机研究与发展,2020,57(7):1424-1448. |
LI D M, ZHANG Y, LI D Y, et al. Review of entity relationship extraction methods[J]. Journal of Computer Research and Development, 2020, 57(7): 1424-1448. | |
2 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
3 | YAO Y, YE D, LI P, et al. DocRED: a large-scale document-level relation extraction dataset[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 764-777. |
4 | TAN Q, XU L, BING L, et al. Revisiting DocRED — addressing the false negative problem in relation extraction[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 8472-8487. |
5 | 冯钧,魏大保,苏栋,等. 文档级实体关系抽取方法研究综述[J]. 计算机科学, 2022, 49(10):224-242. |
FENG J, WEI D B, SU D, et al. Survey of document-level entity relationship extraction methods[J]. Computer Science, 2022, 49(10): 224-242. | |
6 | 祝涛杰,卢记仓,周刚,等. 文档级关系抽取技术研究综述[J]. 计算机科学, 2023, 50(5):189-200. |
ZHU T J, LU J C, ZHOU G, et al. Review of document-level relation extraction techniques[J]. Computer Science, 2023, 50(5):189-200. | |
7 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
8 | LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. [2023-11-18].. |
9 | ZHOU W, HUANG K, MA T, et al. Document-level relation extraction with adaptive thresholding and localized context pooling[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 14612-14620. |
10 | HUANG K, QI P, WANG G, et al. Entity and evidence guided document-level relation extraction[C]// Proceedings of the 6th Workshop on Representation Learning for NLP. Stroudsburg: ACL, 2021: 307-315. |
11 | XIE Y, SHEN J, LI S, et al. Eider: empowering document-level relation extraction with efficient evidence extraction and inference-stage fusion[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 257-268. |
12 | MA Y, WANG A, OKAZAKI N. DREEAM: guiding attention with evidence for improving document-level relation extraction[C]// Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 1971-1983. |
13 | LU C, ZHANG R, SUN K, et al. Anaphor assisted document-level relation extraction[C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 15453-15464. |
14 | ZHANG N, CHEN X, XIE X, et al. Document-level relation extraction as semantic segmentation[C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2021: 3999-4006. |
15 | XIAO Y, ZHANG Z, MAO Y, et al. SAIS: supervising and augmenting intermediate steps for document-level relation extraction[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 2395-2409. |
16 | QI J, XU B, ZENG K, et al. ConstGCN: constrained transmission-based graph convolutional networks for document-level relation extraction[EB/OL]. [2023-08-14].. |
17 | ZENG S, XU R, CHANG B, et al. Double graph based reasoning for document-level relation extraction[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 1630-1640. |
18 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-07-18].. |
19 | XUE Z, LI R, DAI Q, et al. CorefDRE: document-level relation extraction with coreference resolution[EB/OL]. [2023-05-25].. |
20 | ZHANG Y, ZHONG V, CHEN D, et al. Position-aware attention and supervised data improve slot filling[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 35-45. |
[1] | WU Jun, ZHAO Chuan. Small object detection method based on improved DETR algorithm [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | . Ground penetrating radar clutter suppression algorithm for airport runways [J]. Journal of Computer Applications, 0, (): 0-0. |
[3] | SHEN Bin, CHEN Xiaoning, CHENG Hua, FANG Yiquan, WANG Huifeng. Intelligent undergraduate teaching evaluation system based on large language models [J]. Journal of Computer Applications, 0, (): 0-0. |
[4] | Haiyan TIAN, Saihao HUANG, Dong ZHANG, Shoushan LI. Visually guided word segmentation and part of speech tagging [J]. Journal of Computer Applications, 2025, 45(5): 1488-1495. |
[5] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
[6] | Wenbin HU, Tianxiang CAI, Tianle HAN, Zhaoman ZHONG, Changxia MA. Multimodal sarcasm detection model integrating contrastive learning with sentiment analysis [J]. Journal of Computer Applications, 2025, 45(5): 1432-1438. |
[7] | Sijie NIU, Yuliang LIU. Auxiliary diagnostic method for retinopathy based on dual-branch structure with knowledge distillation [J]. Journal of Computer Applications, 2025, 45(5): 1410-1414. |
[8] | Jun YANG, Mengxue PANG, Lishan QIAO. Estimation and classification of brain functional networks based on temporal correlation information fusion [J]. Journal of Computer Applications, 2025, 45(5): 1403-1409. |
[9] | Bo XU, Dezhi HAO, Erchen YU, Hongfei LIN, Linlin ZONG. Psychological counseling human-machine dialogue dataset construction for dialogue generation and mental disorder detection [J]. Journal of Computer Applications, 2025, 45(5): 1395-1402. |
[10] | Pengyu CHEN, Xiushan NIE, Nanjun LI, Tuo LI. Semi-supervised video object segmentation method based on spatio-temporal decoupling and regional robustness enhancement [J]. Journal of Computer Applications, 2025, 45(5): 1379-1386. |
[11] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. |
[12] | Wei ZONG, Yue ZHAO, Yin LI, Xiaona XU. Review of optimization methods for end-to-end speech-to-speech translation [J]. Journal of Computer Applications, 2025, 45(5): 1363-1371. |
[13] | LIU Xiaoxia, KUANG Liqun, WANG Song, JIAO Shichao, HAN Huiyan, XIONG Fengguang. Multi-scale spatio-temporal decoupling for contrastive learning of skeleton action recognition [J]. Journal of Computer Applications, 0, (): 0-0. |
[14] | YIN Chunyong, ZHANG Bufan. Multi-scale based multivariate time series anomaly detection model [J]. Journal of Computer Applications, 0, (): 0-0. |
[15] | CHEN Xiaolei, ZHENG Zhiwei, HUANG Xue, QU Zhenbin. Panoramic video super-resolution network with joint spherical alignment and adaptive geometric correction [J]. Journal of Computer Applications, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||