Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1741-1747.DOI: 10.11772/j.issn.1001-9081.2024070917
• CCF BigData 2024 • Previous Articles
Lilin ZHAN1,2,3, Yongbin QIN1,2,3(), Ruizhang HUANG1,2,3, Hua WANG1,2,3, Yanping CHEN1,2,3
Received:
2024-06-29
Revised:
2024-07-25
Accepted:
2024-08-02
Online:
2024-08-22
Published:
2025-06-10
Contact:
Yongbin QIN
About author:
ZHAN Lilin, born in 2002, M. S. candidate. His research interests include natural language processing, information retrieval.Supported by:
詹力林1,2,3, 秦永彬1,2,3(), 黄瑞章1,2,3, 王华1,2,3, 陈艳平1,2,3
通讯作者:
秦永彬
作者简介:
詹力林(2002—),男,贵州盘州人,硕士研究生,CCF会员,主要研究方向:自然语言处理、信息检索基金资助:
CLC Number:
Lilin ZHAN, Yongbin QIN, Ruizhang HUANG, Hua WANG, Yanping CHEN. Legal case retrieval method integrating temporal behavior chain and event type[J]. Journal of Computer Applications, 2025, 45(6): 1741-1747.
詹力林, 秦永彬, 黄瑞章, 王华, 陈艳平. 融合时序行为链与事件类型的类案检索方法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1741-1747.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024070917
案例 | 案例内容 | 时序行为链 | 事件类型 |
---|---|---|---|
A | 被告急需钱购房,于是持刀威胁原告交出钱包……(918字) 随后,他殴打了原告使其受伤。 | 持→威胁→交出→ 殴打→受伤 | {持械\持枪、威胁/强迫、伤害人身、受伤} |
B | 被告急需钱购房,于是溜进原告家中偷窃其钱包……(908字) 随后,他被原告发现。 | 溜进→偷窃→发现 | {入户/入室,盗窃财物} |
C | 被告在巷子里劫持了原告,随后持刀刺伤了他,导致原告受伤, 目前住院治疗……(1 608字) | 劫持→持→刺伤→受伤 | {绑架、持械\持枪、伤害人身、受伤} |
Tab.1 Examples of temporal behavior chain and event type
案例 | 案例内容 | 时序行为链 | 事件类型 |
---|---|---|---|
A | 被告急需钱购房,于是持刀威胁原告交出钱包……(918字) 随后,他殴打了原告使其受伤。 | 持→威胁→交出→ 殴打→受伤 | {持械\持枪、威胁/强迫、伤害人身、受伤} |
B | 被告急需钱购房,于是溜进原告家中偷窃其钱包……(908字) 随后,他被原告发现。 | 溜进→偷窃→发现 | {入户/入室,盗窃财物} |
C | 被告在巷子里劫持了原告,随后持刀刺伤了他,导致原告受伤, 目前住院治疗……(1 608字) | 劫持→持→刺伤→受伤 | {绑架、持械\持枪、伤害人身、受伤} |
参数 | 值 | 参数 | 值 |
---|---|---|---|
3×10-5 | |||
Tab. 2 Experimental parameters setting
参数 | 值 | 参数 | 值 |
---|---|---|---|
3×10-5 | |||
方法 | P@5 | P@10 | MAP | NDCG@10 | NDCG@20 | NDCG@30 |
---|---|---|---|---|---|---|
BM25 | 0.30 | 0.29 | 0.37 | 0.666 | 0.748 | 0.857 |
BERT | 0.31 | 0.33 | 0.41 | 0.736 | 0.794 | 0.868 |
BERT-Crime | 0.43 | 0.39 | 0.56 | 0.772 | 0.817 | 0.880 |
Lawformer | 0.46 | 0.40 | 0.48 | 0.768 | 0.819 | 0.909 |
BERT-PLI | 0.32 | 0.36 | 0.44 | 0.743 | 0.807 | 0.891 |
BERT-LF | 0.816 | 0.864 | 0.919 | |||
SAILER | 0.46 | 0.44 | 0.56 | |||
本文方法 | 0.50 | 0.47 | 0.60 | 0.842 | 0.882 | 0.932 |
Tab. 3 Comparison of LCR experimental results
方法 | P@5 | P@10 | MAP | NDCG@10 | NDCG@20 | NDCG@30 |
---|---|---|---|---|---|---|
BM25 | 0.30 | 0.29 | 0.37 | 0.666 | 0.748 | 0.857 |
BERT | 0.31 | 0.33 | 0.41 | 0.736 | 0.794 | 0.868 |
BERT-Crime | 0.43 | 0.39 | 0.56 | 0.772 | 0.817 | 0.880 |
Lawformer | 0.46 | 0.40 | 0.48 | 0.768 | 0.819 | 0.909 |
BERT-PLI | 0.32 | 0.36 | 0.44 | 0.743 | 0.807 | 0.891 |
BERT-LF | 0.816 | 0.864 | 0.919 | |||
SAILER | 0.46 | 0.44 | 0.56 | |||
本文方法 | 0.50 | 0.47 | 0.60 | 0.842 | 0.882 | 0.932 |
方法 | P@5 | P@10 | MAP | NDCG@10 | NDCG@20 | NDCG@30 |
---|---|---|---|---|---|---|
-时序行为链 | 0.44 | 0.54 | 0.822 | 0.877 | 0.921 | |
-事件类型 | 0.872 | 0.922 | ||||
-时序行为链- 事件类型 | 0.42 | 0.43 | 0.49 | 0.820 | 0.830 | 0.910 |
-分段编码 | 0.44 | 0.42 | 0.54 | 0.826 | ||
本文方法 | 0.50 | 0.47 | 0.60 | 0.842 | 0.882 | 0.932 |
Tab. 4 Ablation experimental results
方法 | P@5 | P@10 | MAP | NDCG@10 | NDCG@20 | NDCG@30 |
---|---|---|---|---|---|---|
-时序行为链 | 0.44 | 0.54 | 0.822 | 0.877 | 0.921 | |
-事件类型 | 0.872 | 0.922 | ||||
-时序行为链- 事件类型 | 0.42 | 0.43 | 0.49 | 0.820 | 0.830 | 0.910 |
-分段编码 | 0.44 | 0.42 | 0.54 | 0.826 | ||
本文方法 | 0.50 | 0.47 | 0.60 | 0.842 | 0.882 | 0.932 |
参数值 | P@5 | P@10 | MAP | NDCG@10 | NDCG@20 | NDCG@30 | ||
---|---|---|---|---|---|---|---|---|
0.1 | 0.1 | 0.8 | 0.50 | 0.45 | 0.835 | 0.932 | ||
0.1 | 0.2 | 0.7 | 0.47 | 0.58 | 0.840 | 0.878 | ||
0.1 | 0.3 | 0.6 | 0.50 | 0.47 | 0.60 | 0.842 | 0.932 | |
0.1 | 0.4 | 0.5 | 0.45 | 0.57 | 0.819 | 0.876 | 0.928 | |
0.2 | 0.6 | 0.2 | 0.44 | 0.45 | 0.55 | 0.846 | 0.884 | 0.930 |
0.2 | 0.5 | 0.3 | 0.45 | 0.45 | 0.55 | 0.880 | 0.929 |
Tab. 5 Parameter analysis experimental results
参数值 | P@5 | P@10 | MAP | NDCG@10 | NDCG@20 | NDCG@30 | ||
---|---|---|---|---|---|---|---|---|
0.1 | 0.1 | 0.8 | 0.50 | 0.45 | 0.835 | 0.932 | ||
0.1 | 0.2 | 0.7 | 0.47 | 0.58 | 0.840 | 0.878 | ||
0.1 | 0.3 | 0.6 | 0.50 | 0.47 | 0.60 | 0.842 | 0.932 | |
0.1 | 0.4 | 0.5 | 0.45 | 0.57 | 0.819 | 0.876 | 0.928 | |
0.2 | 0.6 | 0.2 | 0.44 | 0.45 | 0.55 | 0.846 | 0.884 | 0.930 |
0.2 | 0.5 | 0.3 | 0.45 | 0.45 | 0.55 | 0.880 | 0.929 |
1 | 王景林,吴宜霖. 类案检索制度在司法实践中的应用研究[J]. 法制博览, 2022(2):100-102. |
WANG J L, WU Y L. Research on the application of case-based retrieval system in judicial practice[J]. Legality Vision, 2022(2): 100-102. | |
2 | HONG Z, ZHOU Q, ZHANG R, et al. Legal feature enhanced semantic matching network for similar case matching[C]// Proceeding of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020:1-8. |
3 | LI H, AI Q, CHEN J, et al. SAILER: structure-aware pre-trained language model for legal case retrieval[C]// Proceeding of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 1035-1044. |
4 | SHAO Y, MAO J, LIU Y, et al. BERT-PLI: modeling paragraph-level interactions for legal case retrieval[C]// Proceeding of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2020: 3501-3507. |
5 | MA Y X, SHAO Y, WU Y, et al. LeCaRD: a legal case retrieval dataset for Chinese law system[C]// Proceeding of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 2342-2348. |
6 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceeding of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
7 | LAFFERTY J, McCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data [C]// Proceeding of the 18th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 2001: 282-289. |
8 | SALTON G, BUCKLEY C. Term-weighting approaches in automatic text retrieval[J]. Information Processing and Management, 1988, 24(5): 513-523. |
9 | ROBERTSON S, ZARAGOZA H. The probabilistic relevance framework: BM25 and beyond[J]. Foundations and Trends® in Information Retrieval, 2009, 3(4): 333-389. |
10 | PONTE J M, CROFT W B. A language modeling approach to information retrieval[C]// Proceeding of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1998:275-281. |
11 | TRAN V, NGUYEN M L, SATOH K. Building legal case retrieval systems with lexical matching and summarization using a pre-trained phrase scoring model[C]// Proceeding of the 17th International Conference on Artificial Intelligence and Law. New York: ACM, 2019: 275-282. |
12 | ASKARI A, VERBERNE S, et al. Combining lexical and neural retrieval with Longformer-based summarization for effective case law retrieval[C]// Proceeding of the 2nd Design of Experimental Search and Information Retrieval Systems. Aachen: CEUR-WS.org, 2021: 162-170. |
13 | BHATTACHARYA P, GHOSH K, PAL A, et al. Methods for computing legal document similarity: a comparative study[EB/OL]. [2024-03-15].. |
14 | LI J, LIU X, NIE X, et al. Weighted-attribute triplet hashing for large-scale similar judicial case matching[J]. Computational Intelligence and Neuroscience, 2021, 2021: No.6650962. |
15 | NIGAM S K, GOEL N, BHATTACHARYA A. nigam@COLIEE-22: legal case retrieval and entailment using cascading of lexical and semantic-based models[C]// Proceeding of the 2022 JSAI International Symposium on Artificial Intelligence, LNCS 13859. Cham: Springer, 2023: 96-108. |
16 | DE MARTINO G, PIO G, CECI M. PRILJ: an efficient two-step method based on embedding and clustering for the identification of regularities in legal case judgments[J]. Artificial Intelligence and Law, 2022, 30(3): 359-390. |
17 | GE J, HUANG Y, SHEN X, et al. Learning fine-grained fact-article correspondence in legal cases[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3694-3706. |
18 | WANG Z. Legal element-oriented modeling with multi-view contrastive learning for legal case retrieval [C]// Proceeding of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-10. |
19 | 曹发鑫,孙媛媛,王治政,等. 面向借贷案件的相似案例匹配模型[J].计算机工程, 2024, 50(1):306-312. |
CAO F X, SUN Y Y, WANG Z Z, et al. Similar case matching model for lending cases [J]. Computer Engineering, 2024, 50(1):306-312. | |
20 | 刘权,余正涛,高盛祥,等. 融合案件要素的相似案例匹配[J]. 中文信息学报, 2022, 36(11):140-147. |
LIU Q, YU Z T, GAO S X, et al. Incorporating case elements for case matching[J]. Journal of Chinese Information Processing, 2022, 36(11):140-147. | |
21 | XIAO C, ZHONG H, GUO Z, et al. CAIL2019-SCM: a dataset of similar case matching in legal domain[EB/OL]. [2024-03-20].. |
22 | HU W, ZHAO S, ZHAO Q, et al. BERT_LF: a similar case retrieval method based on legal facts[J]. Wireless Communications and Mobile Computing, 2022, 2022: No.2511147. |
23 | SUN Z, XU J, ZHANG X, et al. Law article-enhanced legal case matching: a causal learning approach[C]// Proceeding of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 1549-1558. |
24 | YAO F, XIAO C, WANG X, et al. LEVEN: a large-scale Chinese legal event detection dataset[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 183-201. |
25 | LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. [2024-03-25].. |
26 | XIAO C, HU X, LIU Z, et al. Lawformer: a pre-trained language model for Chinese legal long documents[J]. AI Open 2021, 2: 79-84. |
[1] | XIAO Yuhang, LI Guanfeng, CHEN Yuyin, QIN Jing. Few-shot relation extraction model with graph-based multi-view contrastive learning [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | Mingfeng YU, Yongbin QIN, Ruizhang HUANG, Yanping CHEN, Chuan LIN. Multi-label text classification method based on contrastive learning enhanced dual-attention mechanism [J]. Journal of Computer Applications, 2025, 45(6): 1732-1740. |
[3] | Ziliang LI, Guangli ZHU, Yulei ZHANG, Jiajia LIU, Yixuan JIAO, Shunxiang ZHANG. Aspect-based sentiment analysis model integrating syntax and sentiment knowledge [J]. Journal of Computer Applications, 2025, 45(6): 1724-1731. |
[4] |
GAO Fei, CHEN Dong, BIAN Dixing, FAN Wenqiang, LIU Qidong, LYU Pei, ZHANG Chaoyang, XU Mingliang.
Multi-stage coupled decision-making framework for discipline revocation and researcher reallocation#br#
#br#
[J]. Journal of Computer Applications, 0, (): 0-0.
|
[5] | HUANG Yiming, ZOU Xihua, DENG Guo, ZHENG Di. Pre-answering and retrieval filtering: dual-stage optimization approach for RAG-based question-answering systems [J]. Journal of Computer Applications, 0, (): 0-0. |
[6] | . Deep evolutionary document topic clustering model [J]. Journal of Computer Applications, 0, (): 0-0. |
[7] | SHEN Bin, CHEN Xiaoning, CHENG Hua, FANG Yiquan, WANG Huifeng. Intelligent undergraduate teaching evaluation system based on large language models [J]. Journal of Computer Applications, 0, (): 0-0. |
[8] | Haiyan TIAN, Saihao HUANG, Dong ZHANG, Shoushan LI. Visually guided word segmentation and part of speech tagging [J]. Journal of Computer Applications, 2025, 45(5): 1488-1495. |
[9] | Qing ZHANG, Fan YANG, Yuhan FANG. Chinese spelling correction algorithm based on multi-modal information fusion [J]. Journal of Computer Applications, 2025, 45(5): 1528-1534. |
[10] | Jie HU, Shuaixing WU, Zhilan CAO, Yan ZHANG. Named entity recognition model based on global information fusion and multi-dimensional relation perception [J]. Journal of Computer Applications, 2025, 45(5): 1511-1519. |
[11] | Bo XU, Dezhi HAO, Erchen YU, Hongfei LIN, Linlin ZONG. Psychological counseling human-machine dialogue dataset construction for dialogue generation and mental disorder detection [J]. Journal of Computer Applications, 2025, 45(5): 1395-1402. |
[12] | . Chinese Semantic Error Recognition Based on Hierarchical Information Enhancement [J]. Journal of Computer Applications, 0, (): 0-0. |
[13] | . Multi-Label Text Classification method of Power Customer Service Tickets Integrating Feature Enhancement and Contrastive Learning [J]. Journal of Computer Applications, 0, (): 0-0. |
[14] | . Entity-relation extraction strategy in Chinese open-domain based on large language model [J]. Journal of Computer Applications, 0, (): 0-0. |
[15] | . Aspect sentiment triplet extraction model with multi-view linguistic features and sentiment lexicon [J]. Journal of Computer Applications, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||