Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1841-1848.DOI: 10.11772/j.issn.1001-9081.2024060840
• Artificial intelligence • Previous Articles
Daoquan LI, Zheng XU(), Sihui CHEN, Jiayu LIU
Received:
2024-06-24
Revised:
2024-09-09
Accepted:
2024-09-10
Online:
2024-09-25
Published:
2025-06-10
Contact:
Zheng XU
About author:
LI Daoquan, born in 1967, Ph. D., professor. His research interests include internet of things, software defined network, network security, electronic commerce.Supported by:
通讯作者:
徐正
作者简介:
李道全(1967—),男,山东日照人,教授,博士,CCF会员,主要研究方向:物联网、软件定义网络、网络安全、电子商务基金资助:
CLC Number:
Daoquan LI, Zheng XU, Sihui CHEN, Jiayu LIU. Network traffic classification model integrating variational autoencoder and AdaBoost-CNN[J]. Journal of Computer Applications, 2025, 45(6): 1841-1848.
李道全, 徐正, 陈思慧, 刘嘉宇. 融合变分自编码器与自适应增强卷积神经网络的网络流量分类模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1841-1848.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060840
流量类别 | 流量类型 | 流量包大小/MB |
---|---|---|
non-VPN | 7.85 | |
Chat | 34.60 | |
Streaming | 2 826.20 | |
File Transfer | 17 715.20 | |
P2P | 96.80 | |
VoIP | 4.48 | |
VPN | VPN-Email | 7.80 |
VPN-Chat | 27.60 | |
VPN-Streaming | 1.37 | |
VPN-File Transfer | 279.00 | |
VPN-P2P | 358.00 | |
VPN-VoIP | 360.00 |
Tab. 1 Twelve categories in ISCX VPN nonVPN dataset
流量类别 | 流量类型 | 流量包大小/MB |
---|---|---|
non-VPN | 7.85 | |
Chat | 34.60 | |
Streaming | 2 826.20 | |
File Transfer | 17 715.20 | |
P2P | 96.80 | |
VoIP | 4.48 | |
VPN | VPN-Email | 7.80 |
VPN-Chat | 27.60 | |
VPN-Streaming | 1.37 | |
VPN-File Transfer | 279.00 | |
VPN-P2P | 358.00 | |
VPN-VoIP | 360.00 |
序号 | 网络层 | 配置 |
---|---|---|
1 | 1D Convolution | 32 filters,3×1 kernel 和 ReLU |
2 | Max-Pooling | 2×1 kernel |
3 | Dropout | 20% |
4 | Fully connected | 128 Neurons,ReLU |
5 | Dropout | 20% |
6 | Fully connected | 64 Neurons,ReLU |
7 | Fully connected | 3 Neurons, Softmax |
Tab. 2 Parameter setting corresponding to each layer
序号 | 网络层 | 配置 |
---|---|---|
1 | 1D Convolution | 32 filters,3×1 kernel 和 ReLU |
2 | Max-Pooling | 2×1 kernel |
3 | Dropout | 20% |
4 | Fully connected | 128 Neurons,ReLU |
5 | Dropout | 20% |
6 | Fully connected | 64 Neurons,ReLU |
7 | Fully connected | 3 Neurons, Softmax |
模型 | 准确率/% | 计算时间/s |
---|---|---|
VAE-ABC-7layers | 96.53 | 426.11 |
VAE-ABC-5layers | 95.58 | 389.37 |
VAE-H1 | 62.22 | 105.93 |
ABC-5layers | 94.31 | 1 974.61 |
ABC-7layers | 95.61 | 2 447.65 |
H1 | 47.16 | 34.61 |
Tab. 3 Model ablation experiment results
模型 | 准确率/% | 计算时间/s |
---|---|---|
VAE-ABC-7layers | 96.53 | 426.11 |
VAE-ABC-5layers | 95.58 | 389.37 |
VAE-H1 | 62.22 | 105.93 |
ABC-5layers | 94.31 | 1 974.61 |
ABC-7layers | 95.61 | 2 447.65 |
H1 | 47.16 | 34.61 |
分类器数 | 训练准确率/% | 测试准确率/% |
---|---|---|
8 | 94.41 | 93.28 |
10 | 95.89 | 94.00 |
12 | 96.02 | 94.15 |
15 | 95.43 | 93.62 |
Tab. 4 Experimental results of model comparison under different numbers of classifiers
分类器数 | 训练准确率/% | 测试准确率/% |
---|---|---|
8 | 94.41 | 93.28 |
10 | 95.89 | 94.00 |
12 | 96.02 | 94.15 |
15 | 95.43 | 93.62 |
模型 | 训练准确率 | 测试准确率 |
---|---|---|
AdaBoost-CNN | 96.02 | 94.15 |
AdaBoost-D-T | 91.78 | 77.08 |
1DCNN-5Epochs | 95.00 | 91.35 |
1DCNN-10Epochs | 95.67 | 92.18 |
1DCNN-15Epochs | 94.84 | 91.26 |
Tab. 5 Training and testing effects of different models on ISCX VPN-nonVPN dataset
模型 | 训练准确率 | 测试准确率 |
---|---|---|
AdaBoost-CNN | 96.02 | 94.15 |
AdaBoost-D-T | 91.78 | 77.08 |
1DCNN-5Epochs | 95.00 | 91.35 |
1DCNN-10Epochs | 95.67 | 92.18 |
1DCNN-15Epochs | 94.84 | 91.26 |
模型 | 训练准确率 | 测试准确率 |
---|---|---|
VAE-ABC | 96.53 | 94.31 |
AdaBoost-CNN | 96.02 | 94.15 |
1DCNN-10Epochs | 95.67 | 92.18 |
CNN-Weighted | 95.87 | 93.24 |
CNN-Loss | 95.11 | 91.59 |
AdaBoost-SVM | 94.24 | 92.97 |
SMOTE-SVM | 95.88 | 93.68 |
SMOTE-AdaBoost-DT | 96.21 | 94.07 |
AdaBoost-D-T | 91.78 | 77.08 |
ResNet | 93.46 | 82.05 |
Tab. 6 Test results of different models on ISCX VPN-nonVPN dataset
模型 | 训练准确率 | 测试准确率 |
---|---|---|
VAE-ABC | 96.53 | 94.31 |
AdaBoost-CNN | 96.02 | 94.15 |
1DCNN-10Epochs | 95.67 | 92.18 |
CNN-Weighted | 95.87 | 93.24 |
CNN-Loss | 95.11 | 91.59 |
AdaBoost-SVM | 94.24 | 92.97 |
SMOTE-SVM | 95.88 | 93.68 |
SMOTE-AdaBoost-DT | 96.21 | 94.07 |
AdaBoost-D-T | 91.78 | 77.08 |
ResNet | 93.46 | 82.05 |
1 | REZAEI S, LIU X. Deep learning for encrypted traffic classification: an overview[J]. IEEE Communications Magazine, 2019, 57(5): 76-81. |
2 | 于治平,刘彩霞,刘树新,等. 基于机器学习的网络流量分类综述[J]. 信息工程大学学报, 2023, 24(4):447-453, 483. |
YU Z P, LIU C X, LIU S X, et al. Overview of network traffic classification based on machine learning [J]. Journal of Information Engineering University, 2023, 24(4):447-453, 483. | |
3 | 王和勇,樊泓坤,姚正安,等. 不平衡数据集的分类方法研究[J]. 计算机应用研究, 2008, 25(5): 1301-1303, 1308. |
WANG H Y, FAN H K, YAO Z A, et al. Research of imbalanced data classification[J]. Application Research of Computers, 2008, 25(5): 1301-1303, 1308. | |
4 | LEE W, JUN C H, LEE J S. Instance categorization by support vector machines to adjust weights in AdaBoost for imbalanced data classification[J]. Information Sciences, 2017, 381:92-103. |
5 | GALAR M, FERNÁNDEZ A, BARRENECHEA E, et al. Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets[J]. Information Sciences, 2016, 354:178-196. |
6 | HU X, GU C, WEI F. CLD-Net: a network combining CNN and LSTM for Internet encrypted traffic classification [J]. Security and Communication Networks, 2021, 2021: No.5518460. |
7 | 刘丹,姚立霜,王云锋,等. 面向类不平衡流量数据的分类模型[J]. 计算机应用, 2020, 40(8): 2327-2333. |
LIU D, YAO L S, WANG Y F, et al. Classification model for class imbalanced traffic data [J]. Journal of Computer Applications, 2020, 40(8): 2327-2333. | |
8 | BUDA M, MAKI A, MAZUROWSKI M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018, 106:249-259. |
9 | SUN Z, SONG Q, ZHU X, et al. A novel ensemble method for classifying imbalanced data[J]. Pattern Recognition, 2015, 48(5):1623-1637. |
10 | VUCETIC S, OBRADOVIC Z. Classification on data with biased class distribution[C]// Proceedings of the 12th European Conference on Machine Learning, LNCS 2167. Berlin: Springer, 2001: 527-538. |
11 | REZAEI A, YAZDINEJAD M, SOOKHAK M. Credit card fraud detection using tree-based algorithms for highly imbalanced data[C]// Proceedings of the IEEE 3rd International Conference on Computing and Machine Intelligence. Piscataway: IEEE, 2024:1-6. |
12 | NAMKOONG H, DUCHI J C. Variance-based regularization with convex objectives[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017:2975-2984. |
13 | 邹腾宽,汪钰颖,吴承荣. 网络背景流量的分类与识别研究综述[J]. 计算机应用, 2019, 39(3):802-811. |
ZOU T K, WANG Y Y, WU C R. Review of network background traffic classification and identification[J]. Journal of Computer Applications, 2019, 39(3): 802-811. | |
14 | WANG W, ZHU M, ZENG X, et al. Malware traffic classification using convolutional neural network for representation learning[C]// Proceedings of the 2017 International Conference on Information Networking. Piscataway: IEEE, 2017: 712-717. |
15 | CIREAN D, MEIER U, SCHMIDHUBER J. Multi-column deep neural networks for image classification[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012:3642-3649. |
16 | FRAZÃO X, ALEXANDRE L A. Weighted convolutional neural network ensemble[C]// Proceedings of the 2014 Iberoamerican Congress on Pattern Recognition, LNCS 8827. Cham: Springer, 2014:674-681. |
17 | TAHERKHANI A, COSMA G, McGINNITY T M. AdaBoost-CNN: an adaptive boosting algorithm for convolutional neural networks to classify multi-class imbalanced datasets using transfer learning [J]. Neurocomputing, 2020, 404:351-366. |
18 | KRUSE L E, KÜHL S, DOCHHAN A, et al. Monitoring data augmentation of spectral information using VAE and GAN for soft-failure identification [C]// Proceedings of the 2024 Optical Fiber Communications Conference and Exhibition. Piscataway: IEEE, 2024:1-3. |
19 | LYGERAKIS F, RUECKERT E. CR-VAE: contrastive regularization on variational autoencoders for preventing posterior collapse[C]// Proceedings of the 7th Asian Conference on Artificial Intelligence Technology. Piscataway: IEEE, 2023:427-437. |
20 | 谢胜利,陈泓达,高军礼,等. 基于分布对齐变分自编码器的深度多视图聚类[J]. 计算机学报, 2023, 46(5):945-959. |
XIE S L, CHEN H D, GAO J L, et al. Deep multi-view clustering based on distribution aligned variational autoencoder[J]. Chinese Journal of Computers, 2023, 46(5):945-959. | |
21 | DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and VPN traffic using time-related features[C]// Proceedings of the 2nd International Conference on Information Systems Security and Privacy. Setúbal: SciTePress, 2016: 407-414. |
22 | WANG W, ZHU M, WANG J, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]// Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics. Piscataway: IEEE, 2017:43-48. |
23 | MIYAKE N, TAKIGUCHI T, ARIKI Y, et al. Noise detection with multi-class AdaBoost[EB/OL]. [2024-04-21].. |
24 | 边玉婵. 基于SVM和AdaBoost的网络入侵检测方法研究[D]. 沈阳:沈阳工业大学, 2022:35-43. |
BIAN Y C. Research on network intrusion detection method based on SVM and AdaBoost[D]. Shenyang: Shenyang University of Technology, 2022:35-43. | |
25 | 吴海燕,陈晓磊,范国轩. 一种自适应核SMOTE-SVM算法用于不平衡数据分类[J]. 北京化工大学学报(自然科学版), 2023, 50(2):97-104. |
WU H Y, CHEN X L, FAN G X. An adaptive kernel SMOTE-SVM algorithm for imbalanced data classification[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2023, 50(2):97-104. | |
26 | 赵佳丽,徐明江,吴增源,等. 基于SMOTE-AdaBoost-DT的类别不平衡信用评分模型[J]. 中国计量大学学报, 2021, 32(4):549-554. |
ZHAO J L, XU M J, WU Z Y, et al. A SMOTE-AdaBoost-DT model for credit scoring[J]. Journal of China University of Metrology, 2021, 32(4):549-554. |
[1] | Yulin HE, Xu LI, Yingting HE, Laizhong CUI, Zhexue HUANG. Subspace Gaussian mixture model clustering ensemble algorithm based on maximum mean discrepancy [J]. Journal of Computer Applications, 2025, 45(6): 1712-1723. |
[2] | Chaoying JIANG, Qian LI, Ning LIU, Lei LIU, Lizhen CUI. Readmission prediction model based on graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(6): 1784-1792. |
[3] | Xueying LI, Kun YANG, Guoqing TU, Shubo LIU. Adversarial sample generation method for time-series data based on local augmentation [J]. Journal of Computer Applications, 2025, 45(5): 1573-1581. |
[4] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
[5] | Haitao SUN, Jiayu LIN, Zuhong LIANG, Jie GUO. Data augmentation technique incorporating label confusion for Chinese text classification [J]. Journal of Computer Applications, 2025, 45(4): 1113-1119. |
[6] | Chenwei SUN, Junli HOU, Xianggen LIU, Jiancheng LYU. Large language model prompt generation method for engineering drawing understanding [J]. Journal of Computer Applications, 2025, 45(3): 801-807. |
[7] | Ruilong CHEN, Tao HU, Youjun BU, Peng YI, Xianjun HU, Wei QIAO. Stacking ensemble adversarial defense method for encrypted malicious traffic detection model [J]. Journal of Computer Applications, 2025, 45(3): 864-871. |
[8] | Zirong HONG, Guangqing BAO. Review of radar automatic target recognition based on ensemble learning [J]. Journal of Computer Applications, 2025, 45(2): 371-382. |
[9] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
[10] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[11] | Jialin ZHANG, Qinghua REN, Qirong MAO. Speaker verification system utilizing global-local feature dependency for anti-spoofing [J]. Journal of Computer Applications, 2025, 45(1): 308-317. |
[12] | Jiong WANG, Taotao TANG, Caiyan JIA. PAGCL: positive augmentation graph contrastive learning recommendation method without negative sampling [J]. Journal of Computer Applications, 2024, 44(5): 1485-1492. |
[13] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[14] | Zongyu LI, Siwei QIANG, Xiaobo GUO, Zhenfeng ZHU. Re-weighted adversarial variational autoencoder and its application in industrial causal effect estimation [J]. Journal of Computer Applications, 2024, 44(4): 1099-1106. |
[15] | Andi GUO, Zhen JIA, Tianrui LI. High-precision entity and relation extraction in medical domain based on pseudo-entity data augmentation [J]. Journal of Computer Applications, 2024, 44(2): 393-402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||