Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2720-2726.DOI: 10.11772/j.issn.1001-9081.2024071039
• Multimedia computing and computer simulation • Previous Articles
Jing WANG, Jiaxing LIU(), Wanying SONG, Jiaxing XUE, Wenxin DING
Received:
2024-07-23
Revised:
2024-10-12
Accepted:
2024-10-12
Online:
2024-11-19
Published:
2025-08-10
Contact:
Jiaxing LIU
About author:
WANG Jing, born in 1986, Ph. D., lecturer. Her research interests include computer vision, radar signal processing.Supported by:
通讯作者:
刘嘉星
作者简介:
王静(1986—),女,河南安阳人,讲师,博士,CCF会员,主要研究方向:计算机视觉、雷达信号处理基金资助:
CLC Number:
Jing WANG, Jiaxing LIU, Wanying SONG, Jiaxing XUE, Wenxin DING. Few-shot skin image classification model based on spatial transformer network and feature distribution calibration[J]. Journal of Computer Applications, 2025, 45(8): 2720-2726.
王静, 刘嘉星, 宋婉莹, 薛嘉兴, 丁温欣. 基于空间变换网络和特征分布校准的小样本皮肤图像分类模型[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2720-2726.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024071039
类别名称 | 图像数 | 图像尺寸 | 数据属性 |
---|---|---|---|
NV | 6 075 | 600×450 | 元训练集 |
MEL | 1 113 | 600×450 | |
BKL | 1 099 | 600×450 | |
BCC | 514 | 600×450 | |
AKIEC | 327 | 600×450 | 元测试集 |
VASC | 142 | 600×450 | |
DF | 115 | 600×450 |
Tab. 1 Data distribution of ISIC2018 dataset
类别名称 | 图像数 | 图像尺寸 | 数据属性 |
---|---|---|---|
NV | 6 075 | 600×450 | 元训练集 |
MEL | 1 113 | 600×450 | |
BKL | 1 099 | 600×450 | |
BCC | 514 | 600×450 | |
AKIEC | 327 | 600×450 | 元测试集 |
VASC | 142 | 600×450 | |
DF | 115 | 600×450 |
N-way | 模型 | 3-shot | 5-shot | 10-shot |
---|---|---|---|---|
2-way | Transfer[ | 66.88 | 73.88 | 80.38 |
Meta-Baseline[ | 68.77 | 71.03 | 76.97 | |
Baseline+[ | 64.77 | 70.27 | 74.67 | |
PT-MAP[ | 80.63 | 82.96 | 84.53 | |
NegMargin[ | 71.33 | 72.67 | 75.17 | |
本文模型 | 82.02±0.35 | 84.10±0.42 | 86.05±0.44 | |
3-way | Transfer[ | 55.67 | 59.67 | 65.92 |
Meta-Baseline[ | 56.80 | 59.20 | 65.22 | |
Baseline+[ | 53.20 | 54.16 | 57.87 | |
PT-MAP[ | 65.45 | 67.92 | 72.64 | |
NegMargin[ | 60.69 | 57.58 | 63.04 | |
本文模型 | 68.08±0.65 | 71.34±0.35 | 74.25±0.75 |
Tab. 2 Comparison of classification accuracy of different models
N-way | 模型 | 3-shot | 5-shot | 10-shot |
---|---|---|---|---|
2-way | Transfer[ | 66.88 | 73.88 | 80.38 |
Meta-Baseline[ | 68.77 | 71.03 | 76.97 | |
Baseline+[ | 64.77 | 70.27 | 74.67 | |
PT-MAP[ | 80.63 | 82.96 | 84.53 | |
NegMargin[ | 71.33 | 72.67 | 75.17 | |
本文模型 | 82.02±0.35 | 84.10±0.42 | 86.05±0.44 | |
3-way | Transfer[ | 55.67 | 59.67 | 65.92 |
Meta-Baseline[ | 56.80 | 59.20 | 65.22 | |
Baseline+[ | 53.20 | 54.16 | 57.87 | |
PT-MAP[ | 65.45 | 67.92 | 72.64 | |
NegMargin[ | 60.69 | 57.58 | 63.04 | |
本文模型 | 68.08±0.65 | 71.34±0.35 | 74.25±0.75 |
N-way | 模型 | 3-shot | 5-shot | 10-shot |
---|---|---|---|---|
2-way | MetaMed[ | 75.37 | 78.25 | 84.25 |
PFEMed[ | 81.69 | 83.87 | 85.14 | |
SS-DCN[ | 79.22 | 82.63 | — | |
本文模型 | 82.02±0.35 | 84.10±0.42 | 86.05±0.44 | |
3-way | MetaMed[ | 58.50 | 61.25 | 71.00 |
PFEMed[ | 66.94 | 69.78 | 73.81 | |
SS-DCN[ | 66.34 | 70.69 | 74.79 | |
本文模型 | 68.08±0.65 | 71.34±0.35 | 74.25±0.75 |
Tab. 3 Comparison of classification accuracy of the proposed model and few-shot skin classification models
N-way | 模型 | 3-shot | 5-shot | 10-shot |
---|---|---|---|---|
2-way | MetaMed[ | 75.37 | 78.25 | 84.25 |
PFEMed[ | 81.69 | 83.87 | 85.14 | |
SS-DCN[ | 79.22 | 82.63 | — | |
本文模型 | 82.02±0.35 | 84.10±0.42 | 86.05±0.44 | |
3-way | MetaMed[ | 58.50 | 61.25 | 71.00 |
PFEMed[ | 66.94 | 69.78 | 73.81 | |
SS-DCN[ | 66.34 | 70.69 | 74.79 | |
本文模型 | 68.08±0.65 | 71.34±0.35 | 74.25±0.75 |
N-way | 模型 | 预训练 | 空间转换网络 | 特征变换 | 最邻近质心 | 分类精度 | ||
---|---|---|---|---|---|---|---|---|
3-shot | 5-shot | 10-shot | ||||||
2-way | 模型Ⅰ | 63.01±0.86 | 65.24±0.71 | 68.26±0.40 | ||||
模型Ⅱ | √ | 75.94±0.49 | 76.52±0.67 | 78.02±0.38 | ||||
模型Ⅲ | √ | √ | 76.59±0.80 | 77.97±0.37 | 78.73±0.47 | |||
模型Ⅳ | √ | √ | √ | 80.67±0.30 | 81.80±0.65 | 83.84±0.34 | ||
模型Ⅴ | √ | √ | √ | √ | 82.02±0.35 | 84.10±0.42 | 86.05±0.44 | |
3-way | 模型Ⅰ | 47.53±1.21 | 48.72±0.89 | 50.66±0.46 | ||||
模型Ⅱ | √ | 57.69±0.39 | 59.84±0.53 | 62.43±0.36 | ||||
模型Ⅲ | √ | √ | 57.86±0.30 | 60.12±0.38 | 63.21±0.56 | |||
模型Ⅳ | √ | √ | √ | 67.46±0.39 | 69.29±0.72 | 73.08±0.66 | ||
模型Ⅴ | √ | √ | √ | √ | 68.08±0.65 | 71.34±0.35 | 74.25±0.75 |
Tab. 4 Results of ablation experiments
N-way | 模型 | 预训练 | 空间转换网络 | 特征变换 | 最邻近质心 | 分类精度 | ||
---|---|---|---|---|---|---|---|---|
3-shot | 5-shot | 10-shot | ||||||
2-way | 模型Ⅰ | 63.01±0.86 | 65.24±0.71 | 68.26±0.40 | ||||
模型Ⅱ | √ | 75.94±0.49 | 76.52±0.67 | 78.02±0.38 | ||||
模型Ⅲ | √ | √ | 76.59±0.80 | 77.97±0.37 | 78.73±0.47 | |||
模型Ⅳ | √ | √ | √ | 80.67±0.30 | 81.80±0.65 | 83.84±0.34 | ||
模型Ⅴ | √ | √ | √ | √ | 82.02±0.35 | 84.10±0.42 | 86.05±0.44 | |
3-way | 模型Ⅰ | 47.53±1.21 | 48.72±0.89 | 50.66±0.46 | ||||
模型Ⅱ | √ | 57.69±0.39 | 59.84±0.53 | 62.43±0.36 | ||||
模型Ⅲ | √ | √ | 57.86±0.30 | 60.12±0.38 | 63.21±0.56 | |||
模型Ⅳ | √ | √ | √ | 67.46±0.39 | 69.29±0.72 | 73.08±0.66 | ||
模型Ⅴ | √ | √ | √ | √ | 68.08±0.65 | 71.34±0.35 | 74.25±0.75 |
[1] | HUANG S C, PAREEK A, JENSEN M, et al. Self-supervised learning for medical image classification: a systematic review and implementation guidelines[J]. npj Digital Medicine, 2023, 6: No.74. |
[2] | KUMAR A, SINGH S K, SAXENA S, et al. Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer[J]. Information Sciences, 2020, 508: 405-421. |
[3] | SPANHOL F A, OLIVEIRA L S, PETITJEAN C, et al. A dataset for breast cancer histopathological image classification[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(7): 1455-1462. |
[4] | WANG H, WANG S, QIN Z, et al. Triple attention learning for classification of 14 thoracic diseases using chest radiography[J]. Medical Image Analysis, 2021, 67: No.101846. |
[5] | BELLET A, HABRARD A, SEBBAN M. A survey on metric learning for feature vectors and structured data[R/OL]. [2024-11-10].. |
[6] | CHEN Y, LIU Z, XU H, et al. Meta-baseline: exploring simple meta-learning for few-shot learning[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9042-9051. |
[7] | DAI Z, YI J, YAN L, et al. PFEMed: few-shot medical image classification using prior guided feature enhancement[J]. Pattern Recognition, 2023, 134: No.109108. |
[8] | HU Y, GRIPON V, PATEUX S. Leveraging the feature distribution in transfer-based few-shot learning[C]// Proceedings of the 2021 International Conference on Artificial Neural Networks, LNCS 12892. Cham: Springer, 2021: 487-499. |
[9] | 谢莉,舒卫平,耿俊杰,等. 结合加权原型和自适应张量子空间的小样本宫颈细胞分类[J]. 计算机应用, 2024, 44(10): 3200-3208. |
XIE L, SHU W P, GENG J J, et al. Few-shot cervical cell classification combining weighted prototype and adaptive tensor subspaces[J]. Journal of Computer Applications, 2024, 44(10): 3200-3208. | |
[10] | LIU J, SONG L, QIN Y. Prototype rectification for few-shot learning[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 741-756. |
[11] | LEE J H, ZAHEER M Z, ASTRID M, et al. SmoothMix: a simple yet effective data augmentation to train robust classifiers[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 3264-3274. |
[12] | DeVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[EB/OL]. [2024-11-10].. |
[13] | ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup: Beyond empirical risk minimization[EB/OL]. [2024-11-10].. |
[14] | YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6022-6031. |
[15] | VERMA V, LAMB A, BECKHAM C, et al. Manifold Mixup: better representations by interpolating hidden states[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 6438-6447. |
[16] | 严一钦,罗川,李天瑞,等. 基于关系网络和vision Transformer的跨域小样本分类模型[J/OL]. 计算机应用 [2024-06-21].. |
YAN Y Q, LUO C, LI T R, et al. Cross-domain few-shot classification model based on relational networks and vision Transformer[J/OL]. Journal of Computer Applications [2024-06-21].. | |
[17] | GIDARIS S, SINGH P, KOMODAKIS N. Unsupervised representation learning by predicting image rotations[EB/OL]. [2024-11-10].. |
[18] | 蔡安平. 基于属性的小样本分类算法及在医学图像上的应用[D]. 成都:电子科技大学, 2023. |
CAI A P. Attribute-based classification algorithm for few-shot and application to medical images[D]. Chengdu: University of Electronic Science and Technology of China, 2023. | |
[19] | FU W, CHEN J, ZHOU L. Boosting few-shot rare skin disease classification via self-supervision and distribution calibration[J]. Biomedical Engineering Letters, 2024, 14(4): 877-889. |
[20] | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3637-3645. |
[21] | ZAGORUYKO S, KOMODAKIS N. Wide residual networks[C]// Proceedings of the 2016 British Machine Vision Conference. Durham: BMVA Press, 2016: No.87. |
[22] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
[23] | ZHENG X, WANG Y, LIU Y, et al. Graph neural networks for graphs with heterophily: a survey[EB/OL]. [2024-11-10].. |
[24] | BAI J, HUANG S, XIAO Z, et al. Few-shot hyperspectral image classification based on adaptive subspaces and feature transformation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.5523917. |
[25] | MANGLA P, SINGH M, SINHA A, et al. Charting the right manifold: Manifold Mixup for few-shot learning[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2207-2216. |
[26] | 张涛,王波,赵宇,等. 基于特征分布校准的小样本分类改进算法[J].扬州大学学报(自然科学版), 2024, 27(1):56-61. |
ZHANG T, WANG B, ZHAO Y, et al. Improved few-shot classification algorithm based on feature distribution calibration[J]. Journal of Yangzhou University (Natural Science Edition), 2024, 27(1):56-61. | |
[27] | ZOU J, MA X, ZHONG C, et al. Dermoscopic image analysis for ISIC challenge 2018[EB/OL]. [2024-11-10].. |
[28] | SINGH R, BHARTI V, PUROHIT V, et al. MetaMed: few-shot medical image classification using gradient-based meta-learning[J]. Pattern Recognition, 2021, 120: No.108111. |
[29] | CHEN W Y, LIU Y C, KIRA Z, et al. A closer look at few-shot classification[EB/OL]. [2024-11-10].. |
[30] | LIU B, CAO Y, LIN Y, et al. Negative margin matters: understanding margin in few-shot classification[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12349. Cham: Springer, 2020: 438-455. |
[1] | Qiaoling QI, Xiaoxiao WANG, Qianqian ZHANG, Peng WANG, Yongfeng DONG. Label noise adaptive learning algorithm based on meta-learning [J]. Journal of Computer Applications, 2025, 45(7): 2113-2122. |
[2] | Zimo ZHANG, Xuezhuan ZHAO. Multi-scale sparse graph guided vision graph neural networks [J]. Journal of Computer Applications, 2025, 45(7): 2188-2194. |
[3] | Ruifeng BAI, Guanglei GOU, Lang WEN, Wanyu MIAO. Granular-ball prototypical network for few-shot image classification [J]. Journal of Computer Applications, 2025, 45(7): 2269-2277. |
[4] | Xiang WANG, Qianqian CUI, Xiaoming ZHANG, Jianchao WANG, Zhenzhou WANG, Jialin SONG. Wireless capsule endoscopy image classification model based on improved ConvNeXt [J]. Journal of Computer Applications, 2025, 45(6): 2016-2024. |
[5] | Shuangshuang CUI, Hongzhi WANG, Jiahao ZHU, Hao WU. Two-stage data selection method for classifier with low energy consumption and high performance [J]. Journal of Computer Applications, 2025, 45(6): 1703-1711. |
[6] | Sijie NIU, Yuliang LIU. Auxiliary diagnostic method for retinopathy based on dual-branch structure with knowledge distillation [J]. Journal of Computer Applications, 2025, 45(5): 1410-1414. |
[7] | Biqing ZENG, Guangbin ZHONG, James Zhiqing WEN. Few-shot named entity recognition based on decomposed fuzzy span [J]. Journal of Computer Applications, 2025, 45(5): 1504-1510. |
[8] | Liwei ZHANG, Quan LIANG, Yutao HU, Qiaole ZHU. Channel shuffle attention mechanism based on group convolution [J]. Journal of Computer Applications, 2025, 45(4): 1069-1076. |
[9] | Meirong DING, Jinxin ZHUO, Yuwu LU, Qinglong LIU, Jicong LANG. Domain adaptation integrating environment label smoothing and nuclear norm discrepancy [J]. Journal of Computer Applications, 2025, 45(4): 1130-1138. |
[10] | Yiqin YAN, Chuan LUO, Tianrui LI, Hongmei CHEN. Cross-domain few-shot classification model based on relation network and Vision Transformer [J]. Journal of Computer Applications, 2025, 45(4): 1095-1103. |
[11] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
[12] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[13] | Binhong XIE, Wanyin GAO, Wangdong LU, Yingjun ZHANG, Rui ZHANG. Dense object counting network with few-shot similarity matching feature enhancement [J]. Journal of Computer Applications, 2025, 45(2): 403-410. |
[14] | Danni DING, Bo PENG, Xi WU. VPNet: fatty liver ultrasound image classification method inspired by ventral pathway [J]. Journal of Computer Applications, 2025, 45(2): 662-669. |
[15] | Zongsheng ZHENG, Jia DU, Yuhe CHENG, Zecheng ZHAO, Yuewei ZHANG, Xulong WANG. Cross-modal dual-stream alternating interactive network for infrared-visible image classification [J]. Journal of Computer Applications, 2025, 45(1): 275-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||