Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2827-2837.DOI: 10.11772/j.issn.1001-9081.2024081225
• Data science and technology • Previous Articles
Received:
2024-08-29
Revised:
2024-10-26
Accepted:
2024-10-31
Online:
2025-09-10
Published:
2025-09-10
Contact:
Yanhua YU
About author:
LIU Chao, born in 1983, Ph. D., associate professor. His research interests include recommender system.
Supported by:
通讯作者:
余岩化
作者简介:
刘超(1983—),男,四川广安人,副教授,博士,CCF会员,主要研究方向:推荐系统
基金资助:
CLC Number:
Chao LIU, Yanhua YU. Knowledge-aware recommendation model combining denoising strategy and multi-view contrastive learning[J]. Journal of Computer Applications, 2025, 45(9): 2827-2837.
刘超, 余岩化. 融合降噪策略与多视图对比学习的知识感知推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2827-2837.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081225
数据集 | 用户-项目交互 | 知识图谱 | ||||||
---|---|---|---|---|---|---|---|---|
用户数 | 项目数 | 交互数 | 稀疏度 | 实体数 | 关系数 | 三元组数 | 稀疏度 | |
Book-Crossing | 17 860 | 14 976 | 139 746 | 0.000 523 | 77 903 | 25 | 151 500 | 0.000 130 |
MovieLens-1M | 6 036 | 2 445 | 753 772 | 0.051 075 | 182 011 | 12 | 1 241 996 | 0.002 791 |
Last.FM | 1 872 | 3 846 | 42 346 | 0.005 882 | 9 366 | 60 | 15 518 | 0.000 431 |
Alibaba-iFashion | 114 737 | 30 040 | 1 781 093 | 0.000 518 | 59 156 | 51 | 279 155 | 0.000 157 |
Yelp2018 | 45 919 | 45 538 | 1 183 610 | 0.000 566 | 47 472 | 42 | 869 603 | 0.000 402 |
Tab. 1 Dataset statistics
数据集 | 用户-项目交互 | 知识图谱 | ||||||
---|---|---|---|---|---|---|---|---|
用户数 | 项目数 | 交互数 | 稀疏度 | 实体数 | 关系数 | 三元组数 | 稀疏度 | |
Book-Crossing | 17 860 | 14 976 | 139 746 | 0.000 523 | 77 903 | 25 | 151 500 | 0.000 130 |
MovieLens-1M | 6 036 | 2 445 | 753 772 | 0.051 075 | 182 011 | 12 | 1 241 996 | 0.002 791 |
Last.FM | 1 872 | 3 846 | 42 346 | 0.005 882 | 9 366 | 60 | 15 518 | 0.000 431 |
Alibaba-iFashion | 114 737 | 30 040 | 1 781 093 | 0.000 518 | 59 156 | 51 | 279 155 | 0.000 157 |
Yelp2018 | 45 919 | 45 538 | 1 183 610 | 0.000 566 | 47 472 | 42 | 869 603 | 0.000 402 |
数据集 | 三元组数kn | 语义视图 聚合深度L | 结构视图 聚合深度X | α | β | ||
---|---|---|---|---|---|---|---|
Book- Crossing | 512 | 2 | 2 | 0.2 | 0.3 | 0.1 | 0.1 |
MovieLens- 1M | 1 024 | 2 | 2 | 0.4 | 0.3 | 0.1 | 0.1 |
Last.FM | 256 | 3 | 2 | 0.1 | 0.3 | 0.2 | 0.1 |
Alibaba- iFashion | 1 024 | 2 | 2 | 0.2 | 0.3 | 0.1 | 0.1 |
Yelp2018 | 512 | 2 | 2 | 0.2 | 0.3 | 0.2 | 0.1 |
Tab. 2 Optimal parameters of experiments
数据集 | 三元组数kn | 语义视图 聚合深度L | 结构视图 聚合深度X | α | β | ||
---|---|---|---|---|---|---|---|
Book- Crossing | 512 | 2 | 2 | 0.2 | 0.3 | 0.1 | 0.1 |
MovieLens- 1M | 1 024 | 2 | 2 | 0.4 | 0.3 | 0.1 | 0.1 |
Last.FM | 256 | 3 | 2 | 0.1 | 0.3 | 0.2 | 0.1 |
Alibaba- iFashion | 1 024 | 2 | 2 | 0.2 | 0.3 | 0.1 | 0.1 |
Yelp2018 | 512 | 2 | 2 | 0.2 | 0.3 | 0.2 | 0.1 |
模型 | Book-Crossing | MovieLens-1M | Last. FM | Alibaba-iFashion | Yelp2018 | |||||
---|---|---|---|---|---|---|---|---|---|---|
AUC | F1分数 | AUC | F1分数 | AUC | F1分数 | AUC | F1分数 | AUC | F1分数 | |
Improve | 1.11 | 2.06 | 1.11 | 1.52 | 1.24 | 1.82 | 2.04 | 1.86 | 1.06 | 1.79 |
BPRMF | 68.53 | 61.17 | 89.20 | 79.21 | 75.63 | 70.10 | 83.31 | 79.65 | 91.65 | 81.23 |
CKE | 67.59 | 62.35 | 90.65 | 80.24 | 74.71 | 67.40 | 83.13 | 80.22 | 93.61 | 84.27 |
RippleNet | 72.11 | 64.72 | 91.90 | 84.22 | 77.62 | 70.25 | 84.52 | 81.43 | 91.58 | 85.34 |
KGAT | 73.14 | 65.44 | 91.40 | 84.40 | 82.93 | 74.24 | 84.73 | 81.24 | 95.89 | 85.97 |
KGIN | 72.73 | 66.14 | 91.90 | 84.41 | 84.86 | 76.02 | 85.05 | 82.63 | 85.56 | |
CG-KGR | 74.19 | 65.45 | 91.14 | 84.26 | 84.96 | 75.25 | 85.19 | 82.56 | 95.12 | 87.03 |
MCCLK | 76.02 | 67.23 | 86.10 | 87.32 | 94.23 | 88.59 | ||||
KGIC | 91.19 | 85.86 | 85.49 | 77.78 | 84.95 | 82.29 | 92.76 | 87.46 | ||
KACL | 76.25 | 67.11 | 93.11 | 80.11 | 86.12 | 82.53 | 95.96 | |||
MDCLBR | 75.43 | 66.83 | 92.13 | 84.69 | 86.11 | 77.39 | 84.76 | 81.96 | 94.92 | 87.64 |
FDSMVC | 77.52 | 68.98 | 94.35 | 87.56 | 88.65 | 81.64 | 88.12 | 84.66 | 97.23 | 91.56 |
Tab. 3 AUC and F1 score results for CTR prediction
模型 | Book-Crossing | MovieLens-1M | Last. FM | Alibaba-iFashion | Yelp2018 | |||||
---|---|---|---|---|---|---|---|---|---|---|
AUC | F1分数 | AUC | F1分数 | AUC | F1分数 | AUC | F1分数 | AUC | F1分数 | |
Improve | 1.11 | 2.06 | 1.11 | 1.52 | 1.24 | 1.82 | 2.04 | 1.86 | 1.06 | 1.79 |
BPRMF | 68.53 | 61.17 | 89.20 | 79.21 | 75.63 | 70.10 | 83.31 | 79.65 | 91.65 | 81.23 |
CKE | 67.59 | 62.35 | 90.65 | 80.24 | 74.71 | 67.40 | 83.13 | 80.22 | 93.61 | 84.27 |
RippleNet | 72.11 | 64.72 | 91.90 | 84.22 | 77.62 | 70.25 | 84.52 | 81.43 | 91.58 | 85.34 |
KGAT | 73.14 | 65.44 | 91.40 | 84.40 | 82.93 | 74.24 | 84.73 | 81.24 | 95.89 | 85.97 |
KGIN | 72.73 | 66.14 | 91.90 | 84.41 | 84.86 | 76.02 | 85.05 | 82.63 | 85.56 | |
CG-KGR | 74.19 | 65.45 | 91.14 | 84.26 | 84.96 | 75.25 | 85.19 | 82.56 | 95.12 | 87.03 |
MCCLK | 76.02 | 67.23 | 86.10 | 87.32 | 94.23 | 88.59 | ||||
KGIC | 91.19 | 85.86 | 85.49 | 77.78 | 84.95 | 82.29 | 92.76 | 87.46 | ||
KACL | 76.25 | 67.11 | 93.11 | 80.11 | 86.12 | 82.53 | 95.96 | |||
MDCLBR | 75.43 | 66.83 | 92.13 | 84.69 | 86.11 | 77.39 | 84.76 | 81.96 | 94.92 | 87.64 |
FDSMVC | 77.52 | 68.98 | 94.35 | 87.56 | 88.65 | 81.64 | 88.12 | 84.66 | 97.23 | 91.56 |
变体模型 | Book-Crossing | MovieLens-1M | ||
---|---|---|---|---|
AUC | F1分数 | AUC | F1分数 | |
Base | 73.62 | 65.11 | 91.23 | 84.44 |
Base+DN | 75.33 | 66.41 | 92.59 | 85.96 |
Base+S | 74.76 | 66.23 | 92.56 | 85.47 |
Base+CL | 75.16 | 66.96 | 92.43 | 85.88 |
Base+DN+S | 76.49 | 67.59 | 93.51 | 86.75 |
Base+DN+CL | 76.87 | 68.37 | 93.78 | 87.23 |
Base+S+CL | 76.55 | 68.04 | 93.44 | 87.01 |
FDSMVC | 77.52 | 68.98 | 94.35 | 87.56 |
Tab. 4 Influence of FDSMVC modules on model performance
变体模型 | Book-Crossing | MovieLens-1M | ||
---|---|---|---|---|
AUC | F1分数 | AUC | F1分数 | |
Base | 73.62 | 65.11 | 91.23 | 84.44 |
Base+DN | 75.33 | 66.41 | 92.59 | 85.96 |
Base+S | 74.76 | 66.23 | 92.56 | 85.47 |
Base+CL | 75.16 | 66.96 | 92.43 | 85.88 |
Base+DN+S | 76.49 | 67.59 | 93.51 | 86.75 |
Base+DN+CL | 76.87 | 68.37 | 93.78 | 87.23 |
Base+S+CL | 76.55 | 68.04 | 93.44 | 87.01 |
FDSMVC | 77.52 | 68.98 | 94.35 | 87.56 |
变体模型 | Book-Crossing | MovieLens-1M | ||
---|---|---|---|---|
AUC | F1分数 | AUC | F1分数 | |
FDS | 76.49 | 67.59 | 93.51 | 86.75 |
FDS+I | 76.59 | 67.79 | 93.73 | 86.83 |
FDS+L | 76.77 | 67.83 | 93.71 | 86.81 |
FDS+G | 76.68 | 67.85 | 93.56 | 86.83 |
FDS+I+L | 76.95 | 68.39 | 94.18 | 86.99 |
FDS+I+G | 77.11 | 68.09 | 93.95 | 87.11 |
FDS+L+G | 76.93 | 68.25 | 94.07 | 87.15 |
FDSMVC | 77.52 | 68.98 | 94.35 | 87.56 |
Tab. 5 Influence of different contrastive learning modules on model performance
变体模型 | Book-Crossing | MovieLens-1M | ||
---|---|---|---|---|
AUC | F1分数 | AUC | F1分数 | |
FDS | 76.49 | 67.59 | 93.51 | 86.75 |
FDS+I | 76.59 | 67.79 | 93.73 | 86.83 |
FDS+L | 76.77 | 67.83 | 93.71 | 86.81 |
FDS+G | 76.68 | 67.85 | 93.56 | 86.83 |
FDS+I+L | 76.95 | 68.39 | 94.18 | 86.99 |
FDS+I+G | 77.11 | 68.09 | 93.95 | 87.11 |
FDS+L+G | 76.93 | 68.25 | 94.07 | 87.15 |
FDSMVC | 77.52 | 68.98 | 94.35 | 87.56 |
模型 | 计算复杂度 | 训练时间/s |
---|---|---|
KACL | O(L(5|V|d2+d2+|V||E|d+4|E|d+|V|d)+|V|2d+2|N|d) | 8.548 1 |
MCCLK | O(L(2|V||E|d+|E|d))+|V|2log |V|+2|V|2d+k|V|d+|N|d) | 5.374 9 |
CG-KGR | O(L(|V|d2+2|N|d)+|V|d2+|N|d) | 2.230 9 |
CKAN | O(L(d3+|E|d+|N|d)+|U||E|d+d2+|N|d) | 7.569 6 |
KGIN | O(dL +|V|d2+2|E|d+|V|d+|N|d) | 508.766 3 |
FDSMVC | O(L(kd2+|V||E|d+2|E|d+2(|U|+|I|)d+|V|d)+|U||I|2d+|V|2log |V|d+2|V|2d) | 10.042 4 |
FDSMVC-DN | O(L(V||E|d+2|E|d+2(|U|+|I|)d+|V|d)+|V|2log |V|d+2|V|2d) | 8.725 4 |
FDSMVC-S | O(L(kd2+2|E|d+2(|U|+|I|)d+|V|d)+|U||I|2d+2|V|2d) | 8.142 9 |
FDSMVC-I | O(L(kd2+|V||E|d)+|U||I|2d+|V|2log |V|d+2|V|2d) | 9.165 3 |
FDSMVC-L | O(L(kd2+|V||E|d+2|E|d+2(|U|+|I|)d+|V|d)+|U||I|2d+|V|2log |V|d+|V|2d) | 7.843 6 |
FDSMVC-G | O(L(kd2+|V||E|d+2|E|d+2(|U|+|I|)d+|V|d)+|U||I|2d+|V|2log |V|d+|V|2d) | 8.067 9 |
FDSMVC-I-G | O(L(kd2+|V||E|d)+|U||I|2d+|V|2log |V|d+|V|2d) | 7.598 2 |
Tab. 6 Comparison of model computational complexity and training time
模型 | 计算复杂度 | 训练时间/s |
---|---|---|
KACL | O(L(5|V|d2+d2+|V||E|d+4|E|d+|V|d)+|V|2d+2|N|d) | 8.548 1 |
MCCLK | O(L(2|V||E|d+|E|d))+|V|2log |V|+2|V|2d+k|V|d+|N|d) | 5.374 9 |
CG-KGR | O(L(|V|d2+2|N|d)+|V|d2+|N|d) | 2.230 9 |
CKAN | O(L(d3+|E|d+|N|d)+|U||E|d+d2+|N|d) | 7.569 6 |
KGIN | O(dL +|V|d2+2|E|d+|V|d+|N|d) | 508.766 3 |
FDSMVC | O(L(kd2+|V||E|d+2|E|d+2(|U|+|I|)d+|V|d)+|U||I|2d+|V|2log |V|d+2|V|2d) | 10.042 4 |
FDSMVC-DN | O(L(V||E|d+2|E|d+2(|U|+|I|)d+|V|d)+|V|2log |V|d+2|V|2d) | 8.725 4 |
FDSMVC-S | O(L(kd2+2|E|d+2(|U|+|I|)d+|V|d)+|U||I|2d+2|V|2d) | 8.142 9 |
FDSMVC-I | O(L(kd2+|V||E|d)+|U||I|2d+|V|2log |V|d+2|V|2d) | 9.165 3 |
FDSMVC-L | O(L(kd2+|V||E|d+2|E|d+2(|U|+|I|)d+|V|d)+|U||I|2d+|V|2log |V|d+|V|2d) | 7.843 6 |
FDSMVC-G | O(L(kd2+|V||E|d+2|E|d+2(|U|+|I|)d+|V|d)+|U||I|2d+|V|2log |V|d+|V|2d) | 8.067 9 |
FDSMVC-I-G | O(L(kd2+|V||E|d)+|U||I|2d+|V|2log |V|d+|V|2d) | 7.598 2 |
[1] | 李广丽,卓建武,许广鑫,等. 相关性视觉对抗贝叶斯个性化排序推荐模型[J]. 工程科学与技术, 2022, 54(3):230-238. |
LI G L, ZHUO J W, XU G X, et al. Correlation visual adversarial Bayesian personalized ranking recommendation model [J]. Advanced Engineering Sciences, 2022, 54(3): 230-238. | |
[2] | 罗莘涛,陈黎,伍少梅,等. 基于评论特征提取和隐因子模型的评分预测推荐系统[J]. 四川大学学报(自然科学版), 2021, 58(3):59-66. |
LUO X T, CHEN L, WU S M, et al. Rating prediction recommender system based on reviews feature extraction and hidden factor model [J]. Journal of Sichuan University (Natural Science Edition), 2021, 58(3): 59-66. | |
[3] | ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362. |
[4] | 王萌,王昊奋,李博涵,等. 新一代知识图谱关键技术综述[J]. 计算机研究与发展, 2022, 59(9):1947-1965. |
WANG M, WANG H F, LI B H, et al. Survey on key technologies of new generation knowledge graphs [J]. Journal of Computer Research and Development, 2022, 59(9): 1947-1965. | |
[5] | HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. |
[6] | WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation [C]// Proceedings of the 2018 International World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 1835-1844. |
[7] | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Red Hook: Curran Associates Inc., 2013: 2787-2795. |
[8] | LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion [C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2181-2187. |
[9] | HU B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1531-1540. |
[10] | SHI C, HU B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation [J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357-370. |
[11] | WANG X, WANG D, XU C, et al. Explainable reasoning over knowledge graphs for recommendation [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 5329-5336. |
[12] | WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313. |
[13] | WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958. |
[14] | HUANG J, ZHAO W X, DOU H, et al. Improving sequential recommendation with knowledge-enhanced memory networks [C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 505-514. |
[15] | WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426. |
[16] | YU X, REN X, SUN Y, et al. Personalized entity recommendation: a heterogeneous information network approach[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292. |
[17] | WANG H, ZHANG F, ZHANG M, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 968-977. |
[18] | WANG Z, LIN G, TAN H, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 219-228. |
[19] | WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation [C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 878-887. |
[20] | VELIČKOVIĆ P, FEDUS W, HAMILTON W L, et al. Deep Graph Infomax [EB/OL]. [2024-06-23]. . |
[21] | WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. |
[22] | YAO T, YI X, CHENG D Z, et al. Self-supervised learning for large-scale item recommendations [C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 4321-4330. |
[23] | YANG Y, HUANG C, XIA L, et al. Knowledge graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1434-1443. |
[24] | ZOU D, WEI W, WANG W, et al. Improving knowledge-aware recommendation with multi-level interactive contrastive learning[C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 2817-2826. |
[25] | YU R, LI Y, ZHAO M, et al. Multi-view contrastive learning for knowledge-aware recommendation [C]// Proceedings of the 2023 International Conference on Neural Information Processing, LNCS 14451. Singapore: Springer, 2024: 211-223. |
[26] | HALKO N, MARTINSSON P G, TROPP J A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions [J]. SIAM Review, 2011, 53(2): 217-288. |
[27] | CHEN Y, WU L, ZAKI M J. Iterative deep graph learning for graph neural networks: better and robust node embeddings [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 19314-19326. |
[28] | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009: 452-461. |
[29] | ZOU D, WEI W, MAO X L, et al. Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1358-1368. |
[30] | CHEN Y, YANG Y, WANG Y, et al. Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation [C]// Proceedings of the IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 299-311. |
[31] | WANG H, XU Y, YANG C, et al. Knowledge adaptive contrastive learning for recommendation [C]// Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 535-543. |
[32] | SANG L, HU Y, ZHANG Y, et al. Multi-view denoising contrastive learning for bundle recommendation [J]. Applied Intelligence, 2024, 54(23): 12332-12346. |
[33] | XAVIER G, YOSHUA B. Understanding the difficulty of training deep feedforward neural networks [C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2010: 249-256. |
[34] | XIA L, HUANG C, HUANG C Z, et al. Automated self-supervised learning for recommendation [C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 992-1002. |
[1] | Yinchuan TU, Yong GUO, Heng MAO, Yi REN, Jianfeng ZHANG, Bao LI. Evaluation of training efficiency and training performance of graph neural network models based on distributed environment [J]. Journal of Computer Applications, 2025, 45(8): 2409-2420. |
[2] | Zhiyuan WANG, Tao PENG, Jie YANG. Integrating internal and external data for out-of-distribution detection training and testing [J]. Journal of Computer Applications, 2025, 45(8): 2497-2506. |
[3] | Yi WANG, Yinglong MA. Multi-task social item recommendation method based on dynamic adaptive generation of item graph [J]. Journal of Computer Applications, 2025, 45(8): 2592-2599. |
[4] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
[5] | Zimo ZHANG, Xuezhuan ZHAO. Multi-scale sparse graph guided vision graph neural networks [J]. Journal of Computer Applications, 2025, 45(7): 2188-2194. |
[6] | Jin XIE, Surong CHU, Yan QIANG, Juanjuan ZHAO, Hua ZHANG, Yong GAO. Dual-branch distribution consistency contrastive learning model for hard negative sample identification in chest X-rays [J]. Journal of Computer Applications, 2025, 45(7): 2369-2377. |
[7] | Zhenzhou WANG, Fangfang GUO, Jingfang SU, He SU, Jianchao WANG. Robustness optimization method of visual model for intelligent inspection [J]. Journal of Computer Applications, 2025, 45(7): 2361-2368. |
[8] | Danyang CHEN, Changlun ZHANG. Multi-scale decorrelation graph convolutional network model [J]. Journal of Computer Applications, 2025, 45(7): 2180-2187. |
[9] | Yuelan ZHANG, Jing SU, Hangyu ZHAO, Baili YANG. Multi-view knowledge-aware and interactive distillation recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(7): 2211-2220. |
[10] | Wenjing YAN, Ruidong WANG, Min ZUO, Qingchuan ZHANG. Recipe recommendation model based on hierarchical learning of flavor embedding heterogeneous graph [J]. Journal of Computer Applications, 2025, 45(6): 1869-1878. |
[11] | Mingfeng YU, Yongbin QIN, Ruizhang HUANG, Yanping CHEN, Chuan LIN. Multi-label text classification method based on contrastive learning enhanced dual-attention mechanism [J]. Journal of Computer Applications, 2025, 45(6): 1732-1740. |
[12] | Zonghang WU, Dong ZHANG, Guanyu LI. Multimodal fusion recommendation algorithm based on joint self-supervised learning [J]. Journal of Computer Applications, 2025, 45(6): 1858-1868. |
[13] | Chaoying JIANG, Qian LI, Ning LIU, Lei LIU, Lizhen CUI. Readmission prediction model based on graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(6): 1784-1792. |
[14] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. |
[15] | Wenbin HU, Tianxiang CAI, Tianle HAN, Zhaoman ZHONG, Changxia MA. Multimodal sarcasm detection model integrating contrastive learning with sentiment analysis [J]. Journal of Computer Applications, 2025, 45(5): 1432-1438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||