[1] |
杨健,王媛媛,艾丹妮,等. 多模态图像引导手术导航进展[J]. 光学学报, 2023, 43(15): No.1500002.
|
|
YANG J, WANG Y Y, AI D N, et al. Developments of multimodal image-guided surgical navigation[J]. Acta Optica Sinica, 2023, 43(15): No.1500002.
|
[2] |
徐少康,张战成,姚浩男,等. 基于姿态编码器的2D/3D脊椎医学图像实时配准方法[J]. 计算机应用, 2023, 43(2): 589-594.
|
|
XU S K, ZHANG Z C, YAO H N, et al. 2D/3D spinal medical image real-time registration method for based on pose encoder [J]. Journal of Computer Applications, 2023, 43(2): 589-594.
|
[3] |
PHAM D L, XU C, PRINCE J L. Current methods in medical image segmentation [J]. Annual Review of Biomedical Engineering, 2000, 2: 315-337.
|
[4] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
[5] |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation [C]// Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9901. Cham: Springer, 2016: 424-432.
|
[6] |
MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation [C]// Proceedings of the 4th International Conference on 3D Vision. Piscataway: IEEE, 2016: 565-571.
|
[7] |
ZHANG Z, LIU Q, WANG Y. Road extraction by deep residual U-Net [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753.
|
[8] |
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J]. Nature Methods, 2021, 18(2): 203-211.
|
[9] |
SIMPSON A L, ANTONELLI M, BAKAS S, et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms [EB/OL]. [2024-07-10]..
|
[10] |
HUANG H, LIN L, TONG R, et al. UNet 3+: a full-scale connected UNet for medical image segmentation [C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 1055-1059.
|
[11] |
LIU X, ONO K, BISE R. A data augmentation approach that ensures the reliability of foregrounds in medical image segmentation[J]. Image and Vision Computing, 2024, 147: No.105056.
|
[12] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
[13] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2024-07-13]..
|
[14] |
周腊珍,陈红池,李秋霞,等. 基于Transformer深度学习模型在医学图像分割中的研究进展[J]. 中国生物医学工程学报, 2024, 43(4):467-476.
|
|
ZHOU L Z, CHEN H C, LI Q X, et al. Research progress on Transformer-based deep learning models for medical image segmentation [J]. Chinese Journal of Biomedical Engineering, 2024, 43(4): 467-476.
|
[15] |
OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas [EB/OL]. [2024-08-10]..
|
[16] |
CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation [EB/OL]. [2024-08-13]. .
|
[17] |
CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure Transformer for medical image segmentation [C]// Proceedings of the 2022 European Conference on Computer Vision Workshops, LNCS 13803. Cham: Springer, 2023: 205-218.
|
[18] |
BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514-2525.
|
[19] |
XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with Transformers [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 12077-12090.
|
[20] |
SHEN Y, LI J, ZHU W, et al. Graph attention U-Net for retinal layer surface detection and choroid neovascularization segmentation in OCT images [J]. IEEE Transactions on Medical Imaging, 2023, 42(11): 3140-3154.
|
[21] |
WANG Z, WANG W, LI N, et al. Multimodal parallel attention network for medical image segmentation [J]. Image and Vision Computing, 2024, 147: No.105069.
|
[22] |
LI Y, YAO T, PAN Y, et al. Contextual Transformer networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1489-1500.
|
[23] |
CHEN Y, BRUZZONE L, JIANG L, et al. ARU-Net: reduction of atmospheric phase screen in SAR interferometry using attention-based deep residual U-Net [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5780-5793.
|
[24] |
VALANARASU J M J, SINDAGI V A, HACIHALILOGLU I, et al. KiU-Net: overcomplete convolutional architectures for biomedical image and volumetric segmentation [J]. IEEE Transactions on Medical Imaging, 2022, 41(4): 965-976.
|
[25] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
|