Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 104-112.DOI: 10.11772/j.issn.1001-9081.2025010097
• Data science and technology • Previous Articles Next Articles
Xingyao YANG1(
), Zheng QI1, Jiong YU1, Zulian ZHANG2, Shuai MA1, Hongtao SHEN1
Received:2025-01-23
Revised:2025-04-01
Accepted:2025-04-02
Online:2026-01-10
Published:2026-01-10
Contact:
Xingyao YANG
About author:QI Zheng, born in 1999, M. S. candidate. His research interests include recommender system.Supported by:
杨兴耀1(
), 齐正1, 于炯1, 张祖莲2, 马帅1, 沈洪涛1
通讯作者:
杨兴耀
作者简介:齐正(1999—),男,山西大同人,硕士研究生,主要研究方向:推荐系统基金资助:CLC Number:
Xingyao YANG, Zheng QI, Jiong YU, Zulian ZHANG, Shuai MA, Hongtao SHEN. Session-based recommendation model based on time-aware and space-enhanced dual channel graph neural network[J]. Journal of Computer Applications, 2026, 46(1): 104-112.
杨兴耀, 齐正, 于炯, 张祖莲, 马帅, 沈洪涛. 时间感知和空间增强的双通道图神经网络会话推荐模型[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 104-112.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025010097
| 数据集 | 点击次数 | 样本数 | 项目数 | 平均会话长度 | |
|---|---|---|---|---|---|
| 训练集 | 测试集 | ||||
| Diginetica | 982 961 | 719 470 | 60 858 | 43 097 | 5.12 |
| Tmall | 818 479 | 351 268 | 25 898 | 40 728 | 6.69 |
| Nowplaying | 1 367 963 | 825 304 | 89 824 | 60 417 | 7.42 |
Tab. 1 Dataset information
| 数据集 | 点击次数 | 样本数 | 项目数 | 平均会话长度 | |
|---|---|---|---|---|---|
| 训练集 | 测试集 | ||||
| Diginetica | 982 961 | 719 470 | 60 858 | 43 097 | 5.12 |
| Tmall | 818 479 | 351 268 | 25 898 | 40 728 | 6.69 |
| Nowplaying | 1 367 963 | 825 304 | 89 824 | 60 417 | 7.42 |
| 模型 | P@10 | MRR@10 | P@20 | MRR@20 |
|---|---|---|---|---|
| FPMC | 15.43 | 6.20 | 26.53 | 6.95 |
| GRU4Rec | 17.93 | 7.33 | 29.45 | 8.33 |
| NARM | 35.44 | 15.13 | 49.70 | 16.17 |
| STAMP | 33.98 | 14.26 | 45.64 | 14.32 |
| CSRM | 36.59 | 15.41 | 50.55 | 16.38 |
| SR-GNN | 36.86 | 15.52 | 50.73 | 17.59 |
| GCE-GNN | 54.64 | |||
| S2-DHCN | 41.16 | 18.15 | 53.18 | 18.43 |
| Disen-GNN | 40.90 | 18.17 | 53.70 | 19.05 |
| Atten-Mixer | 41.47 | 17.94 | 18.90 | |
| TSG-SR | 42.42 | 18.75 | 56.02 | 20.10 |
Tab. 2 Comparison results of TSG-SR and baseline models on Diginetica dataset
| 模型 | P@10 | MRR@10 | P@20 | MRR@20 |
|---|---|---|---|---|
| FPMC | 15.43 | 6.20 | 26.53 | 6.95 |
| GRU4Rec | 17.93 | 7.33 | 29.45 | 8.33 |
| NARM | 35.44 | 15.13 | 49.70 | 16.17 |
| STAMP | 33.98 | 14.26 | 45.64 | 14.32 |
| CSRM | 36.59 | 15.41 | 50.55 | 16.38 |
| SR-GNN | 36.86 | 15.52 | 50.73 | 17.59 |
| GCE-GNN | 54.64 | |||
| S2-DHCN | 41.16 | 18.15 | 53.18 | 18.43 |
| Disen-GNN | 40.90 | 18.17 | 53.70 | 19.05 |
| Atten-Mixer | 41.47 | 17.94 | 18.90 | |
| TSG-SR | 42.42 | 18.75 | 56.02 | 20.10 |
| 模型 | P@10 | MRR@10 | P@20 | MRR@20 |
|---|---|---|---|---|
| FPMC | 13.10 | 7.12 | 16.06 | 7.32 |
| GRU4Rec | 9.47 | 5.78 | 10.93 | 5.89 |
| NARM | 19.17 | 10.42 | 23.30 | 10.70 |
| STAMP | 22.63 | 13.12 | 26.47 | 13.36 |
| CSRM | 25.54 | 13.62 | 29.46 | 13.96 |
| SR-GNN | 23.41 | 13.45 | 27.57 | 13.72 |
| GCE-GNN | 29.19 | 15.55 | 34.35 | 15.91 |
| S2-DHCN | 26.22 | 14.60 | 31.41 | 15.05 |
| Disen-GNN | 26.34 | 15.19 | 31.58 | 15.46 |
| Atten-Mixer | ||||
| TSG-SR | 36.58 | 18.47 | 42.74 | 18.73 |
Tab. 3 Comparison results of TSG-SR and baseline models on Tmall dataset
| 模型 | P@10 | MRR@10 | P@20 | MRR@20 |
|---|---|---|---|---|
| FPMC | 13.10 | 7.12 | 16.06 | 7.32 |
| GRU4Rec | 9.47 | 5.78 | 10.93 | 5.89 |
| NARM | 19.17 | 10.42 | 23.30 | 10.70 |
| STAMP | 22.63 | 13.12 | 26.47 | 13.36 |
| CSRM | 25.54 | 13.62 | 29.46 | 13.96 |
| SR-GNN | 23.41 | 13.45 | 27.57 | 13.72 |
| GCE-GNN | 29.19 | 15.55 | 34.35 | 15.91 |
| S2-DHCN | 26.22 | 14.60 | 31.41 | 15.05 |
| Disen-GNN | 26.34 | 15.19 | 31.58 | 15.46 |
| Atten-Mixer | ||||
| TSG-SR | 36.58 | 18.47 | 42.74 | 18.73 |
| 模型 | P@10 | MRR@10 | P@20 | MRR@20 |
|---|---|---|---|---|
| FPMC | 5.28 | 2.68 | 7.36 | 2.82 |
| GRU4Rec | 6.74 | 4.40 | 7.92 | 4.48 |
| NARM | 13.60 | 6.60 | 18.59 | 6.93 |
| STAMP | 13.22 | 6.57 | 17.66 | 6.88 |
| CSRM | 13.20 | 6.08 | 18.14 | 6.42 |
| SR-GNN | 14.17 | 7.15 | 18.87 | 7.74 |
| GCE-GNN | 8.03 | 22.37 | 8.40 | |
| S2-DHCN | 17.35 | 7.87 | ||
| Disen-GNN | 15.93 | 8.04 | 22.22 | 8.22 |
| Atten-Mixer | 16.57 | 22.00 | 8.49 | |
| TSG-SR | 18.71 | 8.48 | 24.81 | 8.86 |
Tab. 4 Comparison results of TSG-SR and baseline models on Nowplaying dataset
| 模型 | P@10 | MRR@10 | P@20 | MRR@20 |
|---|---|---|---|---|
| FPMC | 5.28 | 2.68 | 7.36 | 2.82 |
| GRU4Rec | 6.74 | 4.40 | 7.92 | 4.48 |
| NARM | 13.60 | 6.60 | 18.59 | 6.93 |
| STAMP | 13.22 | 6.57 | 17.66 | 6.88 |
| CSRM | 13.20 | 6.08 | 18.14 | 6.42 |
| SR-GNN | 14.17 | 7.15 | 18.87 | 7.74 |
| GCE-GNN | 8.03 | 22.37 | 8.40 | |
| S2-DHCN | 17.35 | 7.87 | ||
| Disen-GNN | 15.93 | 8.04 | 22.22 | 8.22 |
| Atten-Mixer | 16.57 | 22.00 | 8.49 | |
| TSG-SR | 18.71 | 8.48 | 24.81 | 8.86 |
| [1] | AN G, SUN J, YANG Y, et al. Enhancing collaborative information with contrastive learning for session-based recommendation [J]. Information Processing and Management, 2024, 61(4): No.103738. |
| [2] | FU J, GAO R, YU Y, et al. Contrastive graph learning long and short-term interests for POI recommendation [J]. Expert Systems with Applications, 2024, 238(Pt B): No.121931. |
| [3] | CHOI M, KIM H, CHO H, et al. Multi-intent-aware session-based recommendation [C]// Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 2532-2536. |
| [4] | ZHU X, ZHANG Y, WANG J, et al. Graph-enhanced and collaborative attention networks for session-based recommendation [J]. Knowledge-Based Systems, 2024, 289: No.111509. |
| [5] | MAO T, HAO T, FU J, et al. Hierarchical graph fusion network and a new argumentative dataset for multiparty dialogue discourse parsing [J]. Information Processing and Management, 2024, 61(2): No.103613. |
| [6] | ZHANG C, SONG D, HUANG C, et al. Heterogeneous graph neural network [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 793-803. |
| [7] | MAO T, YOSHIE O, FU J, et al. Seeing both sides: context-aware heterogeneous graph matching networks for extracting-related arguments [J]. Neural Computing and Applications, 2024, 36(9): 4741-4762. |
| [8] | YANG Y, WU L, WANG Z, et al. Graph bottlenecked social recommendation [C]// Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 3853-3862. |
| [9] | LU X, WU J. Combining association-rule-guided sequence augmentation with listwise contrastive learning for session-based recommendation [J]. Information Processing and Management, 2025, 62(3): No.103999. |
| [10] | ZHOU W, HAQ A U, QIU L, et al. Multi-view social recommendation via matrix factorization with sub-linear convergence rate [J]. Expert Systems with Applications, 2024, 237(Pt C): No.121687. |
| [11] | ZHOU X, SUN A, LIU Y, et al. SelfCF: a simple framework for self-supervised collaborative filtering [J]. ACM Transactions on Recommender Systems, 2023, 1(2): No.9. |
| [12] | VERMA M, PATNAIK P K. An automatic college library book recommendation system using optimized hidden Markov based weighted fuzzy ranking model [J]. Engineering Applications of Artificial Intelligence, 2024, 130: No.107664. |
| [13] | WU Y, GOU J. Leveraging neighborhood session information with dual attentive neural network for session-based recommendation [J]. Neurocomputing, 2021, 439: 234-242. |
| [14] | YANG F, PENG D. MVC-HGAT: multi-view contrastive hypergraph attention network for session-based recommendation [J]. Applied Intelligence, 2025, 55(1): No.27. |
| [15] | GOPI P S S, KARTHIKEYAN M. Red fox optimization with ensemble recurrent neural network for crop recommendation and yield prediction model [J]. Multimedia Tools and Applications, 2024, 83(5): 13159-13179. |
| [16] | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks [EB/OL]. [2025-01-05]. . |
| [17] | LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1831-1839. |
| [18] | ZHAO P, LUO A, LIU Y, et al. Where to go next: a spatio-temporal gated network for next POI recommendation [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2512-2524. |
| [19] | TANG J, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding [C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573. |
| [20] | 杨兴耀,陈羽,于炯,等.结合自我特征和对比学习的推荐模型[J].计算机应用, 2024, 44(9): 2704-2710. |
| YANG X Y, CHEN Y, YU J, et al. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. | |
| [21] | XIA X, YIN H, YU J, et al. Self-supervised graph co-training for session-based recommendation [C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 2180-2190. |
| [22] | XIE X, SUN F, LIU Z, et al. Contrastive learning for sequential recommendation [C]// Proceedings of the IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 1259-1273. |
| [23] | PEINTNER A, MOHAMMADI A R, ZANGERLE E. SPARE: shortest path global item relations for efficient session-based recommendation [C]// Proceedings of the 17th ACM Conference on Recommender Systems. New York: ACM, 2023: 58-69. |
| [24] | WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 346-353. |
| [25] | YU F, ZHU Y, LIU Q, et al. TAGNN: target attentive graph neural networks for session-based recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1921-1924. |
| [26] | GUO J, YANG Y, SONG X, et al. Learning multi-granularity consecutive user intent unit for session-based recommendation [C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 343-352. |
| [27] | 邬锦琛,杨兴耀,于炯,等.双通道异构图神经网络序列推荐算法[J].计算机科学与探索, 2023, 17(6): 1473-1486. |
| WU J C, YANG X Y, YU J, et al. Sequence recommendation with dual channel heterogeneous graph neural network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1473-1486. | |
| [28] | ZHANG Z, YANG B, XU H, et al. Multi-level category-aware graph neural network for session-based recommendation [J]. Expert Systems with Applications, 2024, 242: No.122773. |
| [29] | LI A, ZHU J, LI Z, et al. Transition information enhanced disentangled graph neural networks for session-based recommendation [J]. Expert Systems with Applications, 2022, 210: No.118336. |
| [30] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
| [31] | HASSANI K, KHASAHMADI A H. Contrastive multi-view representation learning on graphs [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 4116-4126. |
| [32] | ZANGERLE E, PICHL M, GASSLER W, et al. #nowplaying Music dataset: extracting listening behavior from Twitter [C]// Proceedings of the 1st International Workshop on Internet-Scale Multimedia Management. New York: ACM, 2014: 21-26. |
| [33] | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation [C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820. |
| [34] | LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation [C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 1419-1428. |
| [35] | WANG M, REN P, MEI L, et al. A collaborative session-based recommendation approach with parallel memory modules [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 345-354. |
| [36] | WANG Z, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 169-178. |
| [37] | XIA X, YIN H, YU J, et al. Self-supervised hypergraph convolutional networks for session-based recommendation [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4503-4511. |
| [38] | LI A, CHENG Z, LIU F, et al. Disentangled graph neural networks for session-based recommendation [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 7870-7882. |
| [39] | ZHANG P, GUO J, LI C, et al. Efficiently leveraging multi-level user intent for session-based recommendation via atten-mixer network [C]// Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 168-176. |
| [1] | Fan HE, Li LI, Zhongxu YUAN, Xiu YANG, Dongxuan HAN. Knowledge tracking model based on concept association memory network with graph attention [J]. Journal of Computer Applications, 2026, 46(1): 43-51. |
| [2] | Ziyang CHENG, Ruizhang HUANG, Jingjing XUE. Deep evolutionary topic clustering model [J]. Journal of Computer Applications, 2026, 46(1): 85-94. |
| [3] | Wen LI, Kairong LI, Kai YANG. Subgraph-aware contrastive learning with data augmentation [J]. Journal of Computer Applications, 2026, 46(1): 1-9. |
| [4] | Yonghao LIANG, Jinlong LI. Novel message passing network for neural Boolean satisfiability problem solver [J]. Journal of Computer Applications, 2025, 45(9): 2934-2940. |
| [5] | Yanqun LU, Yiyi ZHAO. Customer churn prediction model integrating hierarchical graph neural network and specific feature learning [J]. Journal of Computer Applications, 2025, 45(9): 3057-3066. |
| [6] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
| [7] | Chao LIU, Yanhua YU. Knowledge-aware recommendation model combining denoising strategy and multi-view contrastive learning [J]. Journal of Computer Applications, 2025, 45(9): 2827-2837. |
| [8] | Zhiyuan WANG, Tao PENG, Jie YANG. Integrating internal and external data for out-of-distribution detection training and testing [J]. Journal of Computer Applications, 2025, 45(8): 2497-2506. |
| [9] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
| [10] | Yi WANG, Yinglong MA. Multi-task social item recommendation method based on dynamic adaptive generation of item graph [J]. Journal of Computer Applications, 2025, 45(8): 2592-2599. |
| [11] | Kaile YU, Jiajun LIAO, Jiali MAO, Xiaopeng HUANG. Multi-objective optimization of steel logistics vehicle-cargo matching under multiple constraints [J]. Journal of Computer Applications, 2025, 45(8): 2477-2483. |
| [12] | Quan JIANG, Wenqing HUANG, Zhiyong GOU. Lagrangian particle flow simulation by equivariant graph neural network [J]. Journal of Computer Applications, 2025, 45(8): 2666-2671. |
| [13] | Yinchuan TU, Yong GUO, Heng MAO, Yi REN, Jianfeng ZHANG, Bao LI. Evaluation of training efficiency and training performance of graph neural network models based on distributed environment [J]. Journal of Computer Applications, 2025, 45(8): 2409-2420. |
| [14] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
| [15] | Zimo ZHANG, Xuezhuan ZHAO. Multi-scale sparse graph guided vision graph neural networks [J]. Journal of Computer Applications, 2025, 45(7): 2188-2194. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||