Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 181-187.DOI: 10.11772/j.issn.1001-9081.2025010113
• Advanced computing • Previous Articles Next Articles
Received:2025-02-07
Revised:2025-04-22
Accepted:2025-04-25
Online:2026-01-10
Published:2026-01-10
Contact:
Xuezhi YUE
About author:ZHOU Luhui, born in 2000, M. S. candidate. His research interests include path planning, intelligent algorithm.
Supported by:通讯作者:
岳雪芝
作者简介:周璐辉(2000—),男,江西抚州人,硕士研究生, CCF会员,主要研究方向:路径规划、智能算法
基金资助:CLC Number:
Luhui ZHOU, Xuezhi YUE. Hybrid particle swarm optimization for solving vehicle routing problems with time windows[J]. Journal of Computer Applications, 2026, 46(1): 181-187.
周璐辉, 岳雪芝. 混合粒子群优化算法求解带时间窗的车辆路径规划问题[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 181-187.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025010113
| 符号 | 说明 |
|---|---|
| N | 客户点数量 |
| n | 节点集合(n=0,1, |
| ETi | 第i个顾客最早服务时间 |
| LTi | 第i个顾客最晚服务时间 |
| Ti | 第i个顾客的服务时长 |
| tki | 车辆k到达节点i的时间( |
| K | 需要使用的车辆总数 |
| m | 车辆集合( |
| V | 车辆的行驶速度 |
| dij | 顾客i到顾客j的距离 |
| mj | 第j个顾客的需求量 |
| M | 车辆的最大载重量 |
| D | 车辆的最大配送距离 |
Tab. 1 Description of symbols
| 符号 | 说明 |
|---|---|
| N | 客户点数量 |
| n | 节点集合(n=0,1, |
| ETi | 第i个顾客最早服务时间 |
| LTi | 第i个顾客最晚服务时间 |
| Ti | 第i个顾客的服务时长 |
| tki | 车辆k到达节点i的时间( |
| K | 需要使用的车辆总数 |
| m | 车辆集合( |
| V | 车辆的行驶速度 |
| dij | 顾客i到顾客j的距离 |
| mj | 第j个顾客的需求量 |
| M | 车辆的最大载重量 |
| D | 车辆的最大配送距离 |
| 分组 | 不同参数的取值变化 | 实例 | 平均值 | |||
|---|---|---|---|---|---|---|
| 1 | 0.35→0.05 | 0.45→0.05 | 0.1→0.5 | 0.1→0.4 | C101 | 839.3 |
| R101 | 1 742.2 | |||||
| RC101 | 1 722.8 | |||||
| 2 | 0.45→0.1 | 0.35→0.1 | 0.1→0.4 | 0.1→0.4 | C101 | 845.6 |
| R101 | 1 758.3 | |||||
| RC101 | 1735.4 | |||||
| 3 | 0.3→0.15 | 0.4→0.15 | 0.2→0.4 | 0.15→0.3 | C101 | 846.9 |
| R101 | 1 772.7 | |||||
| RC101 | 1 748.2 | |||||
Tab. 2 Comparison of effects of different parameters
| 分组 | 不同参数的取值变化 | 实例 | 平均值 | |||
|---|---|---|---|---|---|---|
| 1 | 0.35→0.05 | 0.45→0.05 | 0.1→0.5 | 0.1→0.4 | C101 | 839.3 |
| R101 | 1 742.2 | |||||
| RC101 | 1 722.8 | |||||
| 2 | 0.45→0.1 | 0.35→0.1 | 0.1→0.4 | 0.1→0.4 | C101 | 845.6 |
| R101 | 1 758.3 | |||||
| RC101 | 1735.4 | |||||
| 3 | 0.3→0.15 | 0.4→0.15 | 0.2→0.4 | 0.15→0.3 | C101 | 846.9 |
| R101 | 1 772.7 | |||||
| RC101 | 1 748.2 | |||||
| 测试问题 | BKS | HPSO | GAP/% |
|---|---|---|---|
| C101 | 191.30 | 191.81 | 0.27 |
| C102 | 190.30 | 190.74 | 0.23 |
| C103 | 190.30 | 190.74 | 0.23 |
| R101 | 617.10 | 618.33 | 0.20 |
| R102 | 547.10 | 548.11 | 0.18 |
| R103 | 454.60 | 455.69 | 0.24 |
| RC101 | 461.10 | 463.60 | 0.54 |
| RC102 | 351.80 | 352.94 | 0.32 |
| RC103 | 332.80 | 334.11 | 0.39 |
| C201 | 214.70 | 215.54 | 0.39 |
| C202 | 214.70 | 215.54 | 0.39 |
| C203 | 214.70 | 215.54 | 0.39 |
| R201 | 463.30 | 464.37 | 0.23 |
| R202 | 410.50 | 425.31 | 3.61 |
| R203 | 391.40 | 402.67 | 2.88 |
| RC201 | 360.20 | 361.24 | 0.29 |
| RC202 | 338.00 | 339.57 | 0.46 |
| RC203 | 326.90 | 328.44 | 0.47 |
Tab. 3 Comparison of optimal solutions for experiments with 25 customers
| 测试问题 | BKS | HPSO | GAP/% |
|---|---|---|---|
| C101 | 191.30 | 191.81 | 0.27 |
| C102 | 190.30 | 190.74 | 0.23 |
| C103 | 190.30 | 190.74 | 0.23 |
| R101 | 617.10 | 618.33 | 0.20 |
| R102 | 547.10 | 548.11 | 0.18 |
| R103 | 454.60 | 455.69 | 0.24 |
| RC101 | 461.10 | 463.60 | 0.54 |
| RC102 | 351.80 | 352.94 | 0.32 |
| RC103 | 332.80 | 334.11 | 0.39 |
| C201 | 214.70 | 215.54 | 0.39 |
| C202 | 214.70 | 215.54 | 0.39 |
| C203 | 214.70 | 215.54 | 0.39 |
| R201 | 463.30 | 464.37 | 0.23 |
| R202 | 410.50 | 425.31 | 3.61 |
| R203 | 391.40 | 402.67 | 2.88 |
| RC201 | 360.20 | 361.24 | 0.29 |
| RC202 | 338.00 | 339.57 | 0.46 |
| RC203 | 326.90 | 328.44 | 0.47 |
| 测试问题 | BKS | S-PSO-VRPTW[ | VNS[ | HPSO | GAP/% | ||
|---|---|---|---|---|---|---|---|
| S-PSO-VRPTW | VNS | HPSO | |||||
| C101 | 362.40 | 363.25 | 363.25 | 363.25 | 0.23 | 0.23 | 0.23↑ |
| C102 | 361.40 | 362.17 | 362.17 | 362.17 | 0.21 | 0.21 | 0.21↑ |
| C103 | 361.40 | 362.17 | 362.17 | 362.17 | 0.21 | 0.21 | 0.21↑ |
| R101 | 1 044.00 | 1 100.70 | 1 046.70 | 1 055.90 | 5.43 | 0.26 | 1.14↑ |
| R102 | 909.00 | 923.71 | 911.44 | 917.88 | 1.62 | 0.27 | 0.98↑ |
| R103 | 772.90 | 790.17 | 780.77 | 783.03 | 2.23 | 1.02 | 1.31↑ |
| RC101 | 944.00 | 945.58 | 962.34 | 972.31 | 0.17 | 1.94 | 2.99↓ |
| RC102 | 822.50 | 823.97 | 886.47 | 880.21 | 0.18 | 7.78 | 7.02↑ |
| RC103 | 710.90 | 712.91 | 755.14 | 715.91 | 0.28 | 6.21 | 0.70↑ |
| C201 | 360.20 | 444.96 | 361.80 | 361.79 | 23.53 | 0.44 | 0.44↑ |
| C202 | 360.20 | 403.81 | 361.80 | 361.79 | 12.11 | 0.44 | 0.44↑ |
| C203 | 359.80 | 402.52 | 367.42 | 361.41 | 11.87 | 2.12 | 0.45↑ |
| R201 | 791.90 | 953.29 | 809.12 | 816.71 | 20.39 | 2.16 | 3.13↑ |
| R202 | 698.50 | 803.30 | 714.19 | 721.06 | 15.02 | 2.24 | 3.23↑ |
| R203 | 605.30 | 668.36 | 619.77 | 627.76 | 10.42 | 2.39 | 3.71↑ |
| RC201 | 684.80 | 838.76 | 686.31 | 686.31 | 22.48 | 0.22 | 0.22↑ |
| RC202 | 613.60 | 867.26 | 615.04 | 621.09 | 41.34 | 0.23 | 1.22↑ |
| RC203 | 555.30 | 674.44 | 566.57 | 565.91 | 21.44 | 2.03 | 1.91↑ |
Tab. 4 Comparison of optimal solutions for experiments with 50 customers
| 测试问题 | BKS | S-PSO-VRPTW[ | VNS[ | HPSO | GAP/% | ||
|---|---|---|---|---|---|---|---|
| S-PSO-VRPTW | VNS | HPSO | |||||
| C101 | 362.40 | 363.25 | 363.25 | 363.25 | 0.23 | 0.23 | 0.23↑ |
| C102 | 361.40 | 362.17 | 362.17 | 362.17 | 0.21 | 0.21 | 0.21↑ |
| C103 | 361.40 | 362.17 | 362.17 | 362.17 | 0.21 | 0.21 | 0.21↑ |
| R101 | 1 044.00 | 1 100.70 | 1 046.70 | 1 055.90 | 5.43 | 0.26 | 1.14↑ |
| R102 | 909.00 | 923.71 | 911.44 | 917.88 | 1.62 | 0.27 | 0.98↑ |
| R103 | 772.90 | 790.17 | 780.77 | 783.03 | 2.23 | 1.02 | 1.31↑ |
| RC101 | 944.00 | 945.58 | 962.34 | 972.31 | 0.17 | 1.94 | 2.99↓ |
| RC102 | 822.50 | 823.97 | 886.47 | 880.21 | 0.18 | 7.78 | 7.02↑ |
| RC103 | 710.90 | 712.91 | 755.14 | 715.91 | 0.28 | 6.21 | 0.70↑ |
| C201 | 360.20 | 444.96 | 361.80 | 361.79 | 23.53 | 0.44 | 0.44↑ |
| C202 | 360.20 | 403.81 | 361.80 | 361.79 | 12.11 | 0.44 | 0.44↑ |
| C203 | 359.80 | 402.52 | 367.42 | 361.41 | 11.87 | 2.12 | 0.45↑ |
| R201 | 791.90 | 953.29 | 809.12 | 816.71 | 20.39 | 2.16 | 3.13↑ |
| R202 | 698.50 | 803.30 | 714.19 | 721.06 | 15.02 | 2.24 | 3.23↑ |
| R203 | 605.30 | 668.36 | 619.77 | 627.76 | 10.42 | 2.39 | 3.71↑ |
| RC201 | 684.80 | 838.76 | 686.31 | 686.31 | 22.48 | 0.22 | 0.22↑ |
| RC202 | 613.60 | 867.26 | 615.04 | 621.09 | 41.34 | 0.23 | 1.22↑ |
| RC203 | 555.30 | 674.44 | 566.57 | 565.91 | 21.44 | 2.03 | 1.91↑ |
| 测试问题 | BKS | MAPSO[ | GASA[ | HGA[ | ScPSO[ | N-CLPSO[ | HPSO |
|---|---|---|---|---|---|---|---|
| C101 | 828.94 | 846.48 | 832.16 | 828.94 | 828.94 | 828.94 | 828.94 |
| C102 | 828.94 | 847.26 | 829.11 | 828.94 | 828.94 | 828.94 | 828.94 |
| C103 | 828.06 | 853.22 | 832.10 | 830.77 | 828.06 | 828.06 | 829.68 |
| C104 | 824.78 | 831.97 | 828.72 | 864.22 | 852.30 | 824.78 | 837.65 |
| R101 | 1 637.70 | 1 692.89 | 1 643.27 | 1 656.55 | 1 655.87 | 1 648.08 | 1 678.62 |
| R102 | 1 466.60 | 1 529.47 | 1 504.80 | 1 476.85 | 1 474.75 | 1 486.12 | 1 496.38 |
| R103 | 1 208.70 | 1 267.35 | 1 218.80 | 1 230.07 | 1 227.27 | 1 292.68 | 1 286.55 |
| R104 | 976.61 | 977.93 | 1 083.48 | 1 010.55 | 1 012.97 | 996.27 | 1 037.02 |
| RC101 | 1 619.80 | 1 691.57 | 1 703.74 | 1 656.59 | 1 665.27 | 1 635.11 | 1 674.55 |
| RC102 | 1 457.40 | 1 497.62 | 1 505.92 | 1 532.25 | 1 493.58 | 1 503.42 | 1 523.60 |
| RC103 | 1 258.00 | 1 269.61 | 1 327.77 | 1 344.03 | 1 305.40 | 1 261.67 | 1 316.92 |
| RC104 | 1 135.50 | 1 173.88 | 1 213.62 | 1 184.90 | 1 188.32 | 1 135.48 | 1 213.74 |
Tab. 5 Comparison of optimal solutions for experiments with 100 customers
| 测试问题 | BKS | MAPSO[ | GASA[ | HGA[ | ScPSO[ | N-CLPSO[ | HPSO |
|---|---|---|---|---|---|---|---|
| C101 | 828.94 | 846.48 | 832.16 | 828.94 | 828.94 | 828.94 | 828.94 |
| C102 | 828.94 | 847.26 | 829.11 | 828.94 | 828.94 | 828.94 | 828.94 |
| C103 | 828.06 | 853.22 | 832.10 | 830.77 | 828.06 | 828.06 | 829.68 |
| C104 | 824.78 | 831.97 | 828.72 | 864.22 | 852.30 | 824.78 | 837.65 |
| R101 | 1 637.70 | 1 692.89 | 1 643.27 | 1 656.55 | 1 655.87 | 1 648.08 | 1 678.62 |
| R102 | 1 466.60 | 1 529.47 | 1 504.80 | 1 476.85 | 1 474.75 | 1 486.12 | 1 496.38 |
| R103 | 1 208.70 | 1 267.35 | 1 218.80 | 1 230.07 | 1 227.27 | 1 292.68 | 1 286.55 |
| R104 | 976.61 | 977.93 | 1 083.48 | 1 010.55 | 1 012.97 | 996.27 | 1 037.02 |
| RC101 | 1 619.80 | 1 691.57 | 1 703.74 | 1 656.59 | 1 665.27 | 1 635.11 | 1 674.55 |
| RC102 | 1 457.40 | 1 497.62 | 1 505.92 | 1 532.25 | 1 493.58 | 1 503.42 | 1 523.60 |
| RC103 | 1 258.00 | 1 269.61 | 1 327.77 | 1 344.03 | 1 305.40 | 1 261.67 | 1 316.92 |
| RC104 | 1 135.50 | 1 173.88 | 1 213.62 | 1 184.90 | 1 188.32 | 1 135.48 | 1 213.74 |
| 测试问题 | MAPSO[ | GASA[ | HGA[ | ScPSO[ | N-CLPSO[ | HPSO |
|---|---|---|---|---|---|---|
| C101 | 2.11 | 0.39 | 0.00 | 0.00 | 0.00 | 0.00↑ |
| C102 | 2.21 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00↑ |
| C103 | 3.04 | 0.49 | 0.33 | 0.00 | 0.00 | 0.20↑ |
| C104 | 0.87 | 0.48 | 4.78 | 3.34 | 0.00 | 1.56↑ |
| R101 | 3.37 | 0.34 | 1.15 | 1.11 | 0.63 | 2.50↓ |
| R102 | 4.29 | 2.60 | 0.70 | 0.55 | 1.33 | 2.03↑ |
| R103 | 4.85 | 0.84 | 1.77 | 1.54 | 6.95 | 6.44↓ |
| R104 | 0.14 | 10.93 | 3.47 | 3.73 | 2.01 | 6.19↓ |
| RC101 | 4.44 | 5.18 | 2.27 | 2.81 | 0.94 | 3.38↑ |
| RC102 | 2.76 | 3.33 | 5.14 | 2.48 | 3.16 | 4.54↓ |
| RC103 | 0.92 | 5.55 | 6.84 | 3.77 | 0.29 | 4.69↑ |
| RC104 | 3.38 | 6.88 | 4.36 | 4.65 | 0.00 | 6.89↓ |
Tab. 6 Comparison of GAP of optimal solutions for experiments with 100 customers
| 测试问题 | MAPSO[ | GASA[ | HGA[ | ScPSO[ | N-CLPSO[ | HPSO |
|---|---|---|---|---|---|---|
| C101 | 2.11 | 0.39 | 0.00 | 0.00 | 0.00 | 0.00↑ |
| C102 | 2.21 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00↑ |
| C103 | 3.04 | 0.49 | 0.33 | 0.00 | 0.00 | 0.20↑ |
| C104 | 0.87 | 0.48 | 4.78 | 3.34 | 0.00 | 1.56↑ |
| R101 | 3.37 | 0.34 | 1.15 | 1.11 | 0.63 | 2.50↓ |
| R102 | 4.29 | 2.60 | 0.70 | 0.55 | 1.33 | 2.03↑ |
| R103 | 4.85 | 0.84 | 1.77 | 1.54 | 6.95 | 6.44↓ |
| R104 | 0.14 | 10.93 | 3.47 | 3.73 | 2.01 | 6.19↓ |
| RC101 | 4.44 | 5.18 | 2.27 | 2.81 | 0.94 | 3.38↑ |
| RC102 | 2.76 | 3.33 | 5.14 | 2.48 | 3.16 | 4.54↓ |
| RC103 | 0.92 | 5.55 | 6.84 | 3.77 | 0.29 | 4.69↑ |
| RC104 | 3.38 | 6.88 | 4.36 | 4.65 | 0.00 | 6.89↓ |
| 测试问题 | N-CLPSO[ | HPSO | ||
|---|---|---|---|---|
| 平均值 | 标准差 | 平均值 | 标准差 | |
| C101 | 828.94 | 0.00 | 831.48 | 5.10 |
| C102 | 866.03 | 11.54 | 837.31 | 10.40 |
| R101 | 1 688.18 | 15.30 | 1 705.03 | 14.51 |
| R102 | 1 614.59 | 14.43 | 1 544.03 | 6.29 |
| RC101 | 1 698.32 | 15.74 | 1 737.58 | 34.65 |
| RC102 | 1 599.36 | 22.38 | 1 565.13 | 21.84 |
Tab. 7 Stability comparison of HPSO algorithm and N-CLPSO algorithm
| 测试问题 | N-CLPSO[ | HPSO | ||
|---|---|---|---|---|
| 平均值 | 标准差 | 平均值 | 标准差 | |
| C101 | 828.94 | 0.00 | 831.48 | 5.10 |
| C102 | 866.03 | 11.54 | 837.31 | 10.40 |
| R101 | 1 688.18 | 15.30 | 1 705.03 | 14.51 |
| R102 | 1 614.59 | 14.43 | 1 544.03 | 6.29 |
| RC101 | 1 698.32 | 15.74 | 1 737.58 | 34.65 |
| RC102 | 1 599.36 | 22.38 | 1 565.13 | 21.84 |
| [1] | 张凯庆,嵇启春.速度时变的多中心半开放式车辆路径问题研究[J].系统仿真学报, 2022, 34(4): 836-846. |
| ZHANG K Q, JI Q C. Research on multi-depot half-open vehicle routing problem with time-varying speed [J]. Journal of System Simulation, 2022, 34(4): 836-846. | |
| [2] | CORDEAU J F, DESAULNIERS G, DESROSIERS J, et al. VRP with time windows [M]// TOTH P, VIGO D. The vehicle routing problem. Philadelphia, PA: SIAM, 2002: 157-193. |
| [3] | 陈凯,龚毅光.混合多目标灰狼算法求解多目标VRPTW问题[J].计算机工程与应用, 2024, 60(11): 309-318. |
| CHEN K, GONG Y G. Hybrid multiple-objective grey wolf algorithm solving multi-objective vehicle routing problem with time windows [J]. Computer Engineering and Applications, 2024, 60(11): 309-318. | |
| [4] | 李军涛,夏琨,木濑洋.交叉环单向循环搬运系统调度问题的仿真优化研究[J].系统仿真学报, 2016, 28(7): 1561-1566. |
| LI J T, XIA K, HIROSHI K. Scheduling problem of unidirectional material handling system with short-cut [J]. Journal of System Simulation, 2016, 28(7): 1561-1566. | |
| [5] | 石建力,谢丽蓉.近似动态规划求解随机需求分批配送车辆路径问题[J].运筹与管理, 2023, 32(5): 16-22. |
| SHI J L, XIE L R. Approximate dynamic programming for the split delivery vehicle routing problem with stochastic demands [J]. Operations Research and Management Science, 2023, 32(5): 16-22. | |
| [6] | DESAULNIERS G, ERRICO F, IRNICH S, et al. Exact algorithms for electric vehicle-routing problems with time windows [J]. Operations Research, 2016, 64(6): 1388-1405. |
| [7] | ACCORSI L, VIGO D. A fast and scalable heuristic for the solution of large-scale capacitated vehicle routing problems [J]. Transportation Science, 2021, 55(4): 832-856. |
| [8] | ALONSO-MORA J, SAMARANAYAKE S, WALLAR A, et al. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(3): 462-467. |
| [9] | 张建同,丁烨.变邻域模拟退火算法求解速度时变的VRPTW问题[J].运筹与管理, 2019, 28(11): 77-84. |
| ZHANG J T, DING Y. Simulated annealing with variable neighborhood for time-dependent vehicle routing problem with time window [J]. Operations Research and Management Science, 2019, 28(11): 77-84. | |
| [10] | 范厚明,吴嘉鑫,耿静,等.模糊需求与时间窗的车辆路径问题及混合遗传算法求解[J].系统管理学报, 2020, 29(1): 107-118. |
| FAN H M, WU J X, GENG J, et al. Hybrid genetic algorithm for solving fuzzy demand and time windows vehicle routing problem [J]. Journal of Systems and Management, 2020, 29(1): 107-118. | |
| [11] | 鲍惠芳,方杰,张进思,等.基于改进蚁群算法的低碳冷链配送路径优化[J].系统仿真学报, 2024, 36(1): 183-194. |
| BAO H F, FANG J, ZHANG J S, et al. Optimization on cold chain distribution routes considering carbon emissions based on improved ant colony algorithm [J]. Journal of System Simulation, 2024, 36(1): 183-194. | |
| [12] | WU Q, XIA X, SONG H, et al. A neighborhood comprehensive learning particle swarm optimization for the vehicle routing problem with time windows [J]. Swarm and Evolutionary Computation, 2024, 84: No.101425. |
| [13] | URSANI Z, ESSAM D, CORNFORTH D, et al. Localized genetic algorithm for vehicle routing problem with time windows [J]. Applied Soft Computing, 2011, 11(8): 5375-5390. |
| [14] | YU R, YUN L, CHEN C, et al. Vehicle routing optimization for vaccine distribution considering reducing energy consumption [J]. Sustainability, 2023, 15(2): No.1252. |
| [15] | YU B, YANG Z, YAO B. A hybrid algorithm for vehicle routing problem with time windows [J]. Expert Systems with Applications, 2011, 38(1): 435-441. |
| [16] | STODOLA P, NOHEL J. Adaptive ant colony optimization with node clustering for the multidepot vehicle routing problem [J]. IEEE Transactions on Evolutionary Computation, 2023, 27(6): 1866-1880. |
| [17] | MARINAKIS Y, MARINAKI M, MIGDALAS A. A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows [J]. Information Sciences, 2019, 481: 311-329. |
| [18] | WANG Y, CHEN X, SHUANG Z, et al. Self-competition particle swarm optimization algorithm for the vehicle routing problem with time window [J]. IEEE Access, 2024, 12: 127470-127488. |
| [19] | LIU W, BÄCK T, FAN Y. Cluster-centric local search strategies for enhanced multi-objective logistics optimization [C]// Proceedings of the 2024 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2024: 1-8. |
| [20] | GUO E, GAO Y, HU C, et al. A hybrid PSO-DE intelligent algorithm for solving constrained optimization problems based on feasibility rules [J]. Mathematics, 2023, 11(3): No.522. |
| [21] | 吴耀华,张念志.带时间窗车辆路径问题的改进粒子群算法研究[J].计算机工程与应用, 2010, 46(15): 230-234. |
| WU Y H, ZHANG N Z. Modified Particle Swarm Optimization algorithm for vehicle routing problem with time windows [J]. Computer Engineering and Applications, 2010, 46(15): 230-234. | |
| [22] | MLADENOVIĆ N, HANSEN P. Variable neighborhood search [J]. Computers and Operations Research, 1997, 24(11): 1097-1100. |
| [23] | GONG Y J, ZHANG J, LIU O, et al. Optimizing the vehicle routing problem with time windows: a discrete particle swarm optimization approach [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(2): 254-267. |
| [24] | CHEN J, DAN B, SHI J. A variable neighborhood search approach for the multi-compartment vehicle routing problem with time windows considering carbon emission [J]. Journal of Cleaner Production, 2020, 277: No.123932. |
| [25] | ZHANG G, WU M, LI W, et al. Self-adaptive discrete cuckoo search algorithm for the service routing problem with time windows and stochastic service time [J]. Chinese Journal of Electronics, 2023, 32(4): 920-931. |
| [26] | MAROOF A, AYVAZ B, NAEEM K. Logistics optimization using Hybrid Genetic Algorithm (HGA): a solution to the Vehicle Routing Problem with Time Windows (VRPTW) [J]. IEEE Access, 2024, 12: 36974-36989. |
| [1] | Min RAN, Dazhi PAN. Differential evolution algorithm integrating mutation strategy and adjacency information [J]. Journal of Computer Applications, 2026, 46(1): 188-197. |
| [2] | Meng LUO, Chao GAO, Zhen WANG. Improvement method of heuristic vehicle routing algorithm based on constrained spectral clustering [J]. Journal of Computer Applications, 2025, 45(5): 1387-1394. |
| [3] | Suqian WU, Jianguo YAN, Bin YANG, Tao QIN, Ying LIU, Jing YANG. Multi-strategy improved Aquila optimizer and its application in path planning [J]. Journal of Computer Applications, 2025, 45(3): 937-945. |
| [4] | Yanpeng ZHANG, Yuqian ZHAO, Fan ZHANG, Tenghai QIU, Gui GUI, Lingli YU. Capacitated vehicle routing problem solving method based on improved MAML and GVAE [J]. Journal of Computer Applications, 2025, 45(11): 3642-3648. |
| [5] | Peigen GAO, Bin SUO. Experimental design and staged PSO-Kriging modeling based on weighted hesitant fuzzy set [J]. Journal of Computer Applications, 2024, 44(7): 2144-2150. |
| [6] | Yan LI, Dazhi PAN, Siqing ZHENG. Improved adaptive large neighborhood search algorithm for multi-depot vehicle routing problem with time window [J]. Journal of Computer Applications, 2024, 44(6): 1897-1904. |
| [7] | Xuanfeng LI, Shengcai LIU, Ke TANG. Novel genetic algorithm for solving chance-constrained multiple-choice Knapsack problems [J]. Journal of Computer Applications, 2024, 44(5): 1378-1385. |
| [8] | Jianqiang LI, Zhou HE. Hybrid NSGA-Ⅱ for vehicle routing problem with multi-trip pickup and delivery [J]. Journal of Computer Applications, 2024, 44(4): 1187-1194. |
| [9] | Xiaoxin DU, Wei ZHOU, Hao WANG, Tianru HAO, Zhenfei WANG, Mei JIN, Jianfei ZHANG. Survey of subgroup optimization strategies for intelligent algorithms [J]. Journal of Computer Applications, 2024, 44(3): 819-830. |
| [10] | Jian LIN, Jingxuan YE, Wenwen LIU, Xiaowen SHAO. Multimodal differential evolution algorithm for solving capacitated vehicle routing problem [J]. Journal of Computer Applications, 2023, 43(7): 2248-2254. |
| [11] | Jun LIANG, Zehong HONG, Songsen YU. Image segmentation model based on improved particle swarm optimization algorithm and genetic mutation [J]. Journal of Computer Applications, 2023, 43(6): 1743-1749. |
| [12] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
| [13] | Zhenhua YU, Zhengqi LIU, Ying LIU, Cheng GUO. Feature selection method based on self-adaptive hybrid particle swarm optimization for software defect prediction [J]. Journal of Computer Applications, 2023, 43(4): 1206-1213. |
| [14] | Xuesen MA, Xuemei XU, Gonghui JIANG, Yan QIAO, Tianbao ZHOU. Hybrid adaptive particle swarm optimization algorithm for workflow scheduling [J]. Journal of Computer Applications, 2023, 43(2): 474-483. |
| [15] | Feng XIANG, Zhongzhi LI, Xi XIONG, Binyong LI. Inverse distance weight interpolation algorithm based on particle swarm local optimization [J]. Journal of Computer Applications, 2023, 43(2): 385-390. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
