Journal of Computer Applications

    Next Articles

Differential evolution algorithm integrating mutation strategy and adjacent information

  

  • Received:2025-01-17 Revised:2025-04-10 Online:2025-04-27 Published:2025-04-27

融合变异策略与邻接信息的差分进化算法

冉敏,潘大志   

  1. 西华师范大学
  • 通讯作者: 冉敏
  • 基金资助:
    国家自然科学基金;四川省教育厅自然科学基金;西华师大研究生教育改革研究项目

Abstract: Aiming at multi-objective vehicle routing problem with time windows, proposes Differential Evolution algorithm integrating Mutation Strategy and Adjacent Information (DE-MSAI). First, four mutation operators are devised by employing elitist sampling strategy to increase algorithm search breadth. Second, customer adjacency information matrix is established to guide g targeted neighborhood search, improving local optimization efficiency. Finally, simulated annealing criterion is adopted to accept inferior solutions with certain probability. If Pareto non-dominated solution set remains unimproved beyond preset iterations during optimization, elite fragment protection strategy is activated to perturb a randomly selected solution from non-dominated set, maintaining population diversity. Simulation experiments based on Solomon benchmark instances show that proposed algorithm controls solving error within 0.07 compared to hybrid crow search algorithm, and outperforms clustering-based large neighborhood search algorithm in most cases, achieving an average reduction of 4.51 in route deviation metrics, verifying its effectiveness.

Key words: vehicle routing problem, multi-objective optimization, Differential Evolution &#40, DE&#41, algorithm

摘要: 针对多目标带时间窗车辆路径问题,提出了一种融合变异策略与邻接信息的差分进化算法(Differential Evolution Algorithm Integrating Mutation Strategy and Adjacent Information, DE-MSAI)。首先,利用精英抽样策略设计四种变异操作,增加算法搜索的广度;其次,结合客户邻接信息矩阵引导个体进行邻域搜索,提升局部优化效率;最后,基于模拟退火准则以一定的概率接受劣解。如果在迭代过程中,Pareto非支配解集连续未被改善的次数超过阀值,则启动精英碎片保护策略,随机选择一个非支配解集中的解进行扰动,维持种群的多样性。基于Solomon标准库中的算例仿真实验表明,所提算法相较于混合乌鸦算法的求解误差控制在0.07;相较于基于聚类的混合大邻域搜索算法,所提算法在绝大多数算例上结果较优,路线偏差指标平均降低4.51,验证了算法的有效性。

关键词: 车辆路径问题, 多目标优化, 差分进化算法, 邻接信息矩阵, 精英碎片保护策略

CLC Number: