Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 188-197.DOI: 10.11772/j.issn.1001-9081.2025010068

• Advanced computing • Previous Articles     Next Articles

Differential evolution algorithm integrating mutation strategy and adjacency information

Min RAN1,2, Dazhi PAN1,2()   

  1. 1.School of Mathematical Sciences,China West Normal University,Nanchong Sichuan 637009,China
    2.Key Laboratory of Optimization Theory and Application at Sichuan Provincial Universities (China West Normal University),Nanchong Sichuan 637002,China
  • Received:2025-01-17 Revised:2025-04-10 Accepted:2025-04-10 Online:2026-01-10 Published:2026-01-10
  • Contact: Dazhi PAN
  • About author:RAN Min, born in 1998, M. S. candidate. Her research interests include intelligent computing, combinatorial optimization.
  • Supported by:
    National Natural Science Foundation of China(11871059);Natural Science Foundation of Sichuan Provincial Department of Education(18ZA0469);Graduate Education Reform Research Project of China West Normal University(2024XM05)

融合变异策略与邻接信息的差分进化算法

冉敏1,2, 潘大志1,2()   

  1. 1.西华师范大学 数学科学学院,四川 南充 637009
    2.最优化理论与应用四川省高校重点实验室(西华师范大学),四川 南充 637002
  • 通讯作者: 潘大志
  • 作者简介:冉敏(1998—),女(苗族),重庆人,硕士研究生,主要研究方向:智能计算、组合优化
  • 基金资助:
    国家自然科学基金资助项目(11871059);四川省教育厅自然科学基金资助项目(18ZA0469);西华师范大学研究生教育改革研究项目(2024XM05)

Abstract:

Aiming at multi-objective Vehicle Routing Problem (VRP) with time windows, a Differential Evolution algorithm integrating Mutation Strategy and Adjacency Information (DE-MSAI) was proposed. Firstly, four mutation operators were designed by employing elite sampling strategy, so as to increase the algorithm search breadth. Secondly, customer adjacency information matrix was combined to guide the neighborhood search of the individuals, thereby improving local optimization efficiency. Finally, simulated annealing criterion was adopted to accept inferior solutions with certain probability. If the number of Pareto non-dominated solution set remained unimproved was beyond the threshold during optimization, elite fragment protection strategy would be activated to perturb a randomly selected solution from non-dominated solution set, thereby maintaining the population diversity. Simulation results based on Solomon standard library instances show that the proposed algorithm controls the solving error within 0.07% compared to Hybrid Crow Search Algorithm (HCSA), and outperforms K-means clustering algorithm and Improved Large Neighborhood Search Algorithm (K-means-ILNSA) in most cases, achieving an average reduction of 4.51% in route deviation metric, verifying the effectiveness of the algorithm.

Key words: Vehicle Routing Problem (VRP), multi-objective optimization, Differential Evolution (DE) algorithm, adjacency information matrix, elite fragment protection strategy

摘要:

针对多目标带时间窗的车辆路径问题(VRP),提出一种融合变异策略与邻接信息的差分进化算法(DE-MSAI)。首先,利用精英抽样策略设计4种变异操作,增加算法搜索的广度;其次,结合客户邻接信息矩阵引导个体进行邻域搜索,提升局部优化效率;最后,基于模拟退火准则以一定的概率接受劣解。在迭代过程中, 如果Pareto非支配解集连续未被改善的次数超过阈值,则启动精英碎片保护策略随机选择一个非支配解集中的解进行扰动,以维持种群的多样性。基于Solomon标准库中算例的仿真实验结果表明,所提算法相较于混合乌鸦算法(HCSA)的求解误差控制在0.07%以内;相较于基于聚类的混合大邻域搜索算法(K-means-ILNSA),所提算法在绝大多数算例中表现更优,路线偏差指标平均降低了4.51%,验证了算法的有效性。

关键词: 车辆路径问题, 多目标优化, 差分进化算法, 邻接信息矩阵, 精英碎片保护策略

CLC Number: