Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 169-180.DOI: 10.11772/j.issn.1001-9081.2024121843
• Cyber security • Previous Articles Next Articles
Na FAN, Chuang LUO(
), Zehui ZHANG, Mengyao ZHANG, Ding MU
Received:2024-12-31
Revised:2025-03-12
Accepted:2025-03-18
Online:2026-01-10
Published:2026-01-10
Contact:
Chuang LUO
About author:FAN Na, born in 1978, Ph. D., associate professor. Her research interests include internet of things security, intelligent transportation.Supported by:通讯作者:
罗闯
作者简介:樊娜(1978—),女,陕西渭南人,副教授,博士,CCF会员,主要研究方向:物联网安全、智能交通基金资助:CLC Number:
Na FAN, Chuang LUO, Zehui ZHANG, Mengyao ZHANG, Ding MU. Semantic privacy protection mechanism of vehicle trajectory based on improved generative adversarial network[J]. Journal of Computer Applications, 2026, 46(1): 169-180.
樊娜, 罗闯, 张泽晖, 张梦瑶, 穆鼎. 基于改进生成对抗网络的车辆轨迹语义隐私保护机制[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 169-180.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024121843
| 参数 | 西安市出租车数据集 | 重型卡车轨迹数据集 |
|---|---|---|
| 距离阈值 | 200 | 150 |
| 时间阈值 | 15 | 10 |
| 速度阈值 | 0.8 | 1 |
| 标注区域半径 | 50 | 50 |
| 0.5 | 0.5 | |
| 0.2 | 0.2 | |
| 0.3 | 0.3 | |
| 0.6 | 0.6 | |
| 0.4 | 0.4 | |
| 10 | 10 |
Tab. 1 Explanation of parameters
| 参数 | 西安市出租车数据集 | 重型卡车轨迹数据集 |
|---|---|---|
| 距离阈值 | 200 | 150 |
| 时间阈值 | 15 | 10 |
| 速度阈值 | 0.8 | 1 |
| 标注区域半径 | 50 | 50 |
| 0.5 | 0.5 | |
| 0.2 | 0.2 | |
| 0.3 | 0.3 | |
| 0.6 | 0.6 | |
| 0.4 | 0.4 | |
| 10 | 10 |
| [1] | MONTAZERI Z, HOUMANSADR A, PISHRO-NIK H. Achieving perfect location privacy in wireless devices using anonymization [J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2683-2698. |
| [2] | BINDSCHAEDLER V, SHOKRI R. Synthesizing plausible privacy-preserving location traces [C]// Proceedings of the 2016 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2016: 546-563. |
| [3] | GUO K, WANG D, ZHI H, et al. Privacy-preserving trajectory generation algorithm considering utility based on semantic similarity awareness [C]// Proceedings of the 2022 IEEE International Conference on Communications. Piscataway: IEEE, 2022: 992-997. |
| [4] | WANG W, WANG Y, DUAN P, et al. A triple real-time trajectory privacy protection mechanism based on edge computing and blockchain in mobile crowdsourcing [J]. IEEE Transactions on Mobile Computing, 2023, 22(10): 5625-5642. |
| [5] | JIN F, HUA W, FRANCIA M, et al. A survey and experimental study on privacy-preserving trajectory data publishing [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 5577-5596. |
| [6] | LI Y, LI X, LUO X, et al. AnotherMe: a location privacy protection system based on online virtual trajectory generation [J]. IEEE Transactions on Dependable and Secure Computing, 2024, 21(4): 2552-2567. |
| [7] | XU Z, ZHANG J, TSAI P W, et al. Spatiotemporal mobility based trajectory privacy-preserving algorithm in location-based services [J]. Sensors, 2021, 21(6): No.2021. |
| [8] | DOMINGO-FERRER J, MARTÍNEZ S, SÁNCHEZ D. Decentralized k-anonymization of trajectories via privacy-preserving tit-for-tat [J]. Computer Communications, 2022, 190: 57-68. |
| [9] | ZHANG S, HU B, LIANG W, et al. A trajectory privacy-preserving scheme based on transition matrix and caching for IIoT [J]. IEEE Internet of Things Journal, 2024, 11(4): 5745-5756. |
| [10] | JIANG Y, WU Y, ZHANG S, et al. FedVAE: trajectory privacy preserving based on Federated Variational AutoEncoder [C]// Proceedings of the IEEE 98th Vehicular Technology Conference. Piscataway: IEEE, 2023: 1-7. |
| [11] | WU H, SHEN X, GENG C. Trajectory data publishing method with local differential privacy [C]// Proceedings of the 2023 IEEE International Conference on Unmanned Systems. Piscataway: IEEE, 2023: 1-6. |
| [12] | QIAO Y, JI H. Trajectory differential privacy protection with regional center of gravity [C]// Proceedings of the 2022 International Conference on Computer Network, Electronic and Automation. Piscataway: IEEE, 2022: 66-70. |
| [13] | ZHANG J, LANG J. Research on privacy protection method of user activity area trajectory based on noise prefix tree [C]// Proceedings of the 2021 International Conference on Artificial Intelligence, Big Data and Algorithms. Piscataway: IEEE, 2021: 72-75. |
| [14] | LAN J, GOU S, GU J, et al. IoT trajectory data privacy protection based on enhanced Mix-zone [C]// Proceedings of the IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference. Piscataway: IEEE, 2019: 942-946. |
| [15] | HOU L, YAO N, LU Z, et al. Tracking based Mix-Zone location privacy evaluation in VANET [J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10957-10969. |
| [16] | ASHRAF M U, ALMARHABI K A. An advanced dummy position-based privacy provisioning framework for TTP-Based LBS system [J]. IEEE Access, 2024, 12: 23252-23264. |
| [17] | LI Y, LI X, SHANG S, et al. TSHN: a trajectory similarity hybrid networks for dummy trajectory identification [C]// Proceedings of the IEEE 28th International Conference on Parallel and Distributed Systems. Piscataway: IEEE, 2022: 338-345. |
| [18] | NARAYANAN S, CAI C, LIN D. GeoGRCNN: synthetic trajectory generation for location privacy protection [C]// Proceedings of the IEEE 48th Annual Computers, Software, and Applications Conference. Piscataway: IEEE, 2024: 1138-1147. |
| [19] | PARK S H, KIM B, KANG C M, et al. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture [C]// Proceedings of the 2018 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2018: 1672-1678. |
| [20] | DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 1549-1557. |
| [21] | LV K, YUAN L. SKGACN: social knowledge-guided graph attention convolutional network for human trajectory prediction [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: No.2517111. |
| [22] | RAO J, GAO S, KANG Y, et al. LSTM-TrajGAN: a deep learning approach to trajectory privacy protection [EB/OL]. [2024-11-13]. . |
| [23] | MOOSAVI S, RAMNATH R, NANDI A. Discovery of driving patterns by trajectory segmentation [C]// Proceedings of the 3rd ACM SIGSPATIAL PhD Symposium. New York: ACM, 2016: No.4. |
| [24] | MOOSAVI S, OMIDVAR-TEHRANI B, CRAIG R B, et al. Annotation of car trajectories based on driving patterns [EB/OL]. [2024-11-13]. . |
| [25] | HE J, CHU W W, LIU Z. Inferring privacy information from social networks [C]// Proceedings of the 2006 International Conference on Intelligence and Security Informatics, LNCS 3975. Berlin: Springer, 2006: 154-165. |
| [26] | DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature [J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112-122. |
| [27] | LUO Y, YANG Z. DynGAN: solving mode collapse in GANs with dynamic clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5493-5503. |
| [28] | 吴云乘,陈红,赵素云,等.一种基于时空相关性的差分隐私轨迹保护机制[J].计算机学报, 2018, 41(2): 309-322. |
| WU Y C, CHEN H, ZHAO S Y, et al. Differentially private trajectory protection based on spatial and temporal correlation [J]. Chinese Journal of Computers, 2018, 41(2): 309-322. | |
| [29] | 徐燕,樊娜,段宗涛,等.融合隐私保护的车辆轨迹数据停留点挖掘方法[J].计算机系统应用, 2023, 32(2): 329-338. |
| XU Y, FAN N, DUAN Z T, et al. Mining method of vehicle trajectory data stay point fused with privacy protection [J]. Computer Systems and Applications, 2023, 32(2): 329-338. | |
| [30] | ANDRÉS M E, BORDENABE N E, CHATZIKOKOLAKIS K, et al. Geo-indistinguishability: differential privacy for location-based systems [C]// Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2013: 901-914. |
| [31] | SHIN J, SONG Y, AHN J, et al. TCAC-GAN: synthetic trajectory generation model using auxiliary classifier generative adversarial networks for improved protection of trajectory data [C]// Proceedings of the 2023 IEEE International Conference on Big Data and Smart Computing. Piscataway: IEEE, 2023: 314-315. |
| [32] | ZHANG J, HUANG Q, HUANG Y, et al. DP-TrajGAN: a privacy-aware trajectory generation model with differential privacy [J]. Future Generation Computer Systems, 2023, 142: 25-40. |
| [1] | Yinlong JIAN, Xuebin CHEN, Zhongrui JING, Qi ZHONG, Zhenbo ZHANG. Data augmentation scheme based on conditional generative adversarial network in federated learning [J]. Journal of Computer Applications, 2026, 46(1): 21-32. |
| [2] | Lifang WANG, Wenjing REN, Xiaodong GUO, Rongguo ZHANG, Lihua HU. Trident generative adversarial network for low-dose CT image denoising [J]. Journal of Computer Applications, 2026, 46(1): 270-279. |
| [3] | Yilin DENG, Fajiang YU. Pseudo random number generator based on LSTM and separable self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2893-2901. |
| [4] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
| [5] | Ying HUANG, Shengmei GAO, Guang CHEN, Su LIU. Low-light image enhancement network combining signal-to-noise ratio guided dual-branch structure and histogram equalization [J]. Journal of Computer Applications, 2025, 45(6): 1971-1979. |
| [6] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
| [7] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
| [8] | Hong SHANGGUAN, Huiying REN, Xiong ZHANG, Xinglong HAN, Zhiguo GUI, Yanling WANG. Low-dose CT denoising model based on dual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2025, 45(2): 624-632. |
| [9] | Jing HUANG, Xin PENG, Wenhao LI, Kai HU, Teng WANG, Yamin HUANG, Yuanqiao WEN. High-quality sonar image generation method based on multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(12): 3987-3994. |
| [10] | You SHANG, Xianghua MIAO. Bayesian membership inference attacks for generative adversarial networks [J]. Journal of Computer Applications, 2025, 45(10): 3252-3258. |
| [11] | Guoyu XU, Xiaolong YAN, Yidan ZHANG. DU-FastGAN: lightweight generative adversarial network based on dynamic-upsample [J]. Journal of Computer Applications, 2025, 45(10): 3067-3073. |
| [12] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
| [13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
| [14] | Peiqian LIU, Shuilian WANG, Zihao SHEN, Hui WANG. Location privacy protection algorithm based on trajectory perturbation and road network matching [J]. Journal of Computer Applications, 2024, 44(5): 1546-1554. |
| [15] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||