Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 331-340.DOI: 10.11772/j.issn.1001-9081.2025010085
• Frontier and comprehensive applications • Previous Articles
Shiwei LI1, Yufeng ZHOU1, Pengfei SUN1, Weisong LIU2, Zhuxuan MENG2, Haojie LIAN1(
)
Received:2025-01-22
Revised:2025-03-21
Accepted:2025-03-27
Online:2026-01-10
Published:2026-01-10
Contact:
Haojie LIAN
About author:LI Shiwei, born in 1999, M. S. candidate. His research interests include deep learning.Supported by:
李世伟1, 周昱峰1, 孙鹏飞1, 刘伟松2, 孟竹喧2, 廉浩杰1(
)
通讯作者:
廉浩杰
作者简介:李世伟(1999—),男,山西晋城人,硕士研究生,主要研究方向:深度学习基金资助:CLC Number:
Shiwei LI, Yufeng ZHOU, Pengfei SUN, Weisong LIU, Zhuxuan MENG, Haojie LIAN. Point cloud data augmentation method based on scattering and absorption effects of coal dust on LiDAR electromagnetic waves[J]. Journal of Computer Applications, 2026, 46(1): 331-340.
李世伟, 周昱峰, 孙鹏飞, 刘伟松, 孟竹喧, 廉浩杰. 基于煤尘对激光雷达电磁波散射和吸收效应的点云数据增强方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 331-340.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025010085
| 粒径大小/μm | 权重 | ||
|---|---|---|---|
| (0,20] | 0.006 1 | 9.5 | 0.689 |
| (20,45] | 0.044 5 | 10.7 | 0.279 |
| (45,60] | 0.000 0 | 19.2 | 0.022 |
| (60,90] | -0.008 8 | 25.2 | 0.009 |
| (90,125] | -0.000 2 | 34.3 | 0.001 |
| (125,150] | 0.024 6 | 36.8 | 0.000 |
| (150,180] | 0.030 3 | 44.4 | 0.000 |
| (212,250] | 0.023 7 | 216.6 | 0.000 |
Tab. 1 Calculation for extinction coefficients[21] and weights
| 粒径大小/μm | 权重 | ||
|---|---|---|---|
| (0,20] | 0.006 1 | 9.5 | 0.689 |
| (20,45] | 0.044 5 | 10.7 | 0.279 |
| (45,60] | 0.000 0 | 19.2 | 0.022 |
| (60,90] | -0.008 8 | 25.2 | 0.009 |
| (90,125] | -0.000 2 | 34.3 | 0.001 |
| (125,150] | 0.024 6 | 36.8 | 0.000 |
| (150,180] | 0.030 3 | 44.4 | 0.000 |
| (212,250] | 0.023 7 | 216.6 | 0.000 |
| 模型 | 数据 | 汽车 AP@0.7IoU | 行人AP@0.25IoU | 骑行者AP@0.25IoU | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Easy | Moderate | Hard | Easy | Moderate | Hard | Easy | Moderate | Hard | ||
| PV-RCNN++ | 原始数据 | 95.89 | 85.88 | 86.23 | 63.04 | 45.90 | 42.60 | 72.51 | 48.16 | 45.02 |
| 仿真数据 | 96.01 | 86.35 | 86.41 | 64.31 | 51.42 | 47.56 | 74.96 | 49.68 | 46.54 | |
| PV-RCNN | 原始数据 | 91.88 | 80.10 | 77.41 | 50.57 | 43.89 | 39.97 | 70.35 | 51.67 | 48.22 |
| 仿真数据 | 92.90 | 81.98 | 78.26 | 54.06 | 45.63 | 40.88 | 70.95 | 52.51 | 49.97 | |
| PointRCNN | 原始数据 | 88.52 | 74.60 | 70.56 | 49.62 | 43.24 | 38.18 | 69.28 | 49.47 | 46.26 |
| 仿真数据 | 89.68 | 75.27 | 71.72 | 50.89 | 44.39 | 39.59 | 68.36 | 50.89 | 47.33 | |
| PointPillars | 原始数据 | 87.25 | 72.86 | 68.32 | 35.00 | 29.81 | 27.44 | 63.28 | 43.24 | 40.22 |
| 仿真数据 | 87.98 | 73.90 | 69.16 | 35.88 | 31.20 | 29.49 | 59.70 | 43.83 | 39.75 | |
| Voxel_RCNN_Car | 原始数据 | 98.56 | 92.85 | 91.12 | ||||||
| 仿真数据 | 98.38 | 93.57 | 91.68 | |||||||
Tab. 2 Detection precisions of 3D object detection models in coal dust environment
| 模型 | 数据 | 汽车 AP@0.7IoU | 行人AP@0.25IoU | 骑行者AP@0.25IoU | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Easy | Moderate | Hard | Easy | Moderate | Hard | Easy | Moderate | Hard | ||
| PV-RCNN++ | 原始数据 | 95.89 | 85.88 | 86.23 | 63.04 | 45.90 | 42.60 | 72.51 | 48.16 | 45.02 |
| 仿真数据 | 96.01 | 86.35 | 86.41 | 64.31 | 51.42 | 47.56 | 74.96 | 49.68 | 46.54 | |
| PV-RCNN | 原始数据 | 91.88 | 80.10 | 77.41 | 50.57 | 43.89 | 39.97 | 70.35 | 51.67 | 48.22 |
| 仿真数据 | 92.90 | 81.98 | 78.26 | 54.06 | 45.63 | 40.88 | 70.95 | 52.51 | 49.97 | |
| PointRCNN | 原始数据 | 88.52 | 74.60 | 70.56 | 49.62 | 43.24 | 38.18 | 69.28 | 49.47 | 46.26 |
| 仿真数据 | 89.68 | 75.27 | 71.72 | 50.89 | 44.39 | 39.59 | 68.36 | 50.89 | 47.33 | |
| PointPillars | 原始数据 | 87.25 | 72.86 | 68.32 | 35.00 | 29.81 | 27.44 | 63.28 | 43.24 | 40.22 |
| 仿真数据 | 87.98 | 73.90 | 69.16 | 35.88 | 31.20 | 29.49 | 59.70 | 43.83 | 39.75 | |
| Voxel_RCNN_Car | 原始数据 | 98.56 | 92.85 | 91.12 | ||||||
| 仿真数据 | 98.38 | 93.57 | 91.68 | |||||||
| 模型 | 数据 | 汽车AP@0.7IoU | 行人AP@0.25IoU | 骑行者AP@0.25IoU | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Easy | Moderate | Hard | Easy | Moderate | Hard | Easy | Moderate | Hard | ||
| PV-RCNN++ | 原始数据 | 96.03 | 86.29 | 86.80 | 63.06 | 45.95 | 42.66 | 72.51 | 48.16 | 45.02 |
| 仿真数据 | 96.04 | 86.99 | 86.97 | 64.31 | 51.60 | 47.67 | 74.96 | 49.68 | 46.54 | |
| PV-RCNN | 原始数据 | 95.12 | 87.24 | 84.93 | 58.04 | 51.14 | 47.22 | 70.56 | 52.89 | 50.10 |
| 仿真数据 | 96.41 | 88.38 | 86.14 | 58.60 | 51.71 | 46.04 | 71.50 | 53.97 | 51.77 | |
| PointRCNN | 原始数据 | 92.48 | 83.19 | 79.23 | 52.66 | 47.52 | 41.27 | 71.38 | 52.09 | 48.67 |
| 仿真数据 | 93.58 | 84.21 | 79.88 | 54.50 | 48.63 | 42.63 | 74.00 | 55.90 | 52.89 | |
| PointPillars | 原始数据 | 92.09 | 85.05 | 82.00 | 44.63 | 38.75 | 35.73 | 66.85 | 48.11 | 44.94 |
| 仿真数据 | 93.55 | 85.94 | 83.16 | 45.77 | 39.76 | 36.13 | 61.28 | 48.90 | 44.23 | |
| Voxel_RCNN_Car | 原始数据 | 98.60 | 93.09 | 91.28 | ||||||
| 仿真数据 | 98.41 | 93.76 | 91.81 | |||||||
Tab. 3 Detection precisions from bird's-eye view in coal dust environment
| 模型 | 数据 | 汽车AP@0.7IoU | 行人AP@0.25IoU | 骑行者AP@0.25IoU | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Easy | Moderate | Hard | Easy | Moderate | Hard | Easy | Moderate | Hard | ||
| PV-RCNN++ | 原始数据 | 96.03 | 86.29 | 86.80 | 63.06 | 45.95 | 42.66 | 72.51 | 48.16 | 45.02 |
| 仿真数据 | 96.04 | 86.99 | 86.97 | 64.31 | 51.60 | 47.67 | 74.96 | 49.68 | 46.54 | |
| PV-RCNN | 原始数据 | 95.12 | 87.24 | 84.93 | 58.04 | 51.14 | 47.22 | 70.56 | 52.89 | 50.10 |
| 仿真数据 | 96.41 | 88.38 | 86.14 | 58.60 | 51.71 | 46.04 | 71.50 | 53.97 | 51.77 | |
| PointRCNN | 原始数据 | 92.48 | 83.19 | 79.23 | 52.66 | 47.52 | 41.27 | 71.38 | 52.09 | 48.67 |
| 仿真数据 | 93.58 | 84.21 | 79.88 | 54.50 | 48.63 | 42.63 | 74.00 | 55.90 | 52.89 | |
| PointPillars | 原始数据 | 92.09 | 85.05 | 82.00 | 44.63 | 38.75 | 35.73 | 66.85 | 48.11 | 44.94 |
| 仿真数据 | 93.55 | 85.94 | 83.16 | 45.77 | 39.76 | 36.13 | 61.28 | 48.90 | 44.23 | |
| Voxel_RCNN_Car | 原始数据 | 98.60 | 93.09 | 91.28 | ||||||
| 仿真数据 | 98.41 | 93.76 | 91.81 | |||||||
| [1] | 孙继平,程继杰.煤矿冲击地压和煤与瓦斯突出事故自动发现与报警方法研究[J].工矿自动化, 2024, 50(5): 1-5. |
| SUN J P, CHENG J J. Research on automatic detection and alarm methods for coal mine rock burst and coal and gas outburst accidents [J]. Journal of Mine Automation, 2024, 50(5): 1-5. | |
| [2] | BAO H, ZHANG R. Study on optimization of coal truck flow in open-pit mine [J]. Advances in Civil Engineering, 2020, 2020: 1-13. |
| [3] | ZHANG Z, CHEN X, HUANG J. Research on innovation posture of automated driving technology based on patentometrics [J]. Technology and Investment, 2018, 9(3): No.137. |
| [4] | 于明凯,陈留金,林泽阳,等.基于城市轨道交通无人驾驶技术的矿车无人驾驶系统[J].科技创新与应用, 2022, 12(1): 132-134. |
| YU M K, CHEN L J, LIN Z Y, et al. Autonomous mine car system based on urban rail transit unmanned technology [J]. Technology Innovation and Application, 2022, 12(1): 132-134. | |
| [5] | GAO Y, AI Y, TIAN B, et al. Parallel end-to-end autonomous mining: an IoT-oriented approach [J]. IEEE Internet of Things Journal, 2019, 7(2): 1011-1023. |
| [6] | ZHANG Y, CARBALLO A, YANG H, et al. Perception and sensing for autonomous vehicles under adverse weather conditions: a survey [J]. ISPRS Journal of Photogrammetry Remote Sensing, 2023, 196: 146-177. |
| [7] | URMSON C, ANHALT J, BAGNELL D, et al. Autonomous driving in urban environments: boss and the urban challenge [J]. Journal of Field Robotics, 2008, 25(8): 425-466. |
| [8] | ZAMANAKOS G, TSOCHATZIDIS L, AMANATIADIS A, et al. A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving [J]. Computers Graphics, 2021, 99: 153-181. |
| [9] | DO A T, YOO M. LossDistillNet: 3D object detection in point cloud under harsh weather conditions [J]. IEEE Access, 2022, 10: 84882-84893. |
| [10] | HU X, DUAN Z, HUANG X, et al. Context-aware data augmentation for lidar 3D object detection [C]// Proceedings of the 2023 IEEE International Conference on Image Processing. Piscataway: IEEE, 2023: 11-15. |
| [11] | AN P, LIANG J, MA J, et al. RS-Aug: improve 3D object detection on LiDAR with realistic simulator based data augmentation [J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 10165-10176. |
| [12] | ZHANG Y, DING M, YANG H, et al. LiDAR point cloud augmentation for adverse conditions using conditional generative model [J]. Remote Sensing, 2024, 16(12): No.2247. |
| [13] | HAHNER M, SAKARIDIS C, DAI D, et al. Fog simulation on real LiDAR point clouds for 3D object detection in adverse weather [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15283-15292. |
| [14] | HAHNER M, SAKARIDIS C, BIJELIC M, et al. Lidar snowfall simulation for robust 3D object detection [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16364-16374. |
| [15] | VARGAS RIVERO J R, GERBICH T, BUSCHARDT B, et al. Data augmentation of automotive lidar point clouds under adverse weather situations [J]. Sensors, 2021, 21(13): No.4503. |
| [16] | 张康,刘澈,王帅钦.激光雷达点云数据增强方法、装置、设备、介质及产品: CN202411081199.5 [P]. 2024-12-24. |
| ZHANG K, LIU C, WANG S Q. LiDAR point cloud data augmentation method, device, equipment, medium, and product: CN202411081199.5 [P]. 2024-12-24. | |
| [17] | 刘磊,郭二民,李忠华,等.加强“十四五”露天煤矿开采环境管理的建议[J].中国煤炭, 2021, 47(10): 61-66. |
| LIU L, GUO E M, LI Z H, et al. Suggestions on strengthening environmental management of open-pit coal mining during the 14th Five-Year Plan [J]. China Coal, 2021, 47(10): 61-66. | |
| [18] | 唐珏,王俊. “双碳”目标下煤炭发展及对策建议[J].中国矿业, 2023, 32(9): 22-31. |
| TANG Y, WANG J. Coal development and countermeasures under the goal of "double carbon" [J]. China Mining Magazine, 2023, 32(9): 22-31. | |
| [19] | WANG Z, ZHOU W, JISKANI I M, et al. Dust pollution in cold region Surface Mines and its prevention and control [J]. Environmental Pollution, 2022, 292(Part A): No.118293. |
| [20] | SWINEHART D F. The Beer-Lambert Law [J]. Journal of Chemical Education, 1962, 39(7): No.333. |
| [21] | LI B, MAO S, ZHANG H. Laser attenuation and ranging correction in the coal dust environment based on MIE theory and phase ranging principle [J]. Atmosphere, 2023, 14(5): No.845. |
| [22] | AZAM S, MISHRA D P. Effects of particle size, dust concentration and dust-dispersion-air pressure on rock dust inertant requirement for coal dust explosion suppression in underground coal mines [J]. Process Safety Environmental Protection, 2019, 126: 35-43. |
| [23] | RASSHOFER R H, SPIES M, SPIES H. Influences of weather phenomena on automotive laser radar systems [J]. Advances in Radio Science, 2011, 9: 49-60. |
| [24] | SASSEN K, DODD G C. Lidar crossover function and misalignment effects [J]. Applied Optics, 1982, 21(17): 3162-3165. |
| [25] | LI Y, LI Z, TENG S, et al. AutoMine: an unmanned mine dataset [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 21308-21317. |
| [26] | GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the KITTI vision benchmark suite [C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 3354-3361. |
| [27] | CHEN X, KUNDU K, ZHANG Z, et al. Monocular 3D object detection for autonomous driving [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2147-2156. |
| [28] | SIMONELLI A, BULO S R, PORZI L, et al. Disentangling monocular 3d object detection [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1991-1999. |
| [29] | TEAM O. OpenPCDet: an open-source toolbox for 3D object detection from point clouds [EB/OL]. [2024-12-14]. . |
| [30] | SHI S, JIANG L, DENG J, et al. PV-RCNN++: point-voxel feature set abstraction with local vector representation for 3D object detection [J]. International Journal of Computer Vision, 2023, 131(2): 531-551. |
| [31] | SHI S, GUO C, JIANG L, et al. Pv-RCNN: point-voxel feature set abstraction for 3D object detection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10529-10538. |
| [32] | SHI S, WANG X, LI H. PointRCNN: 3D object proposal generation and detection from point cloud [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 770-779. |
| [33] | LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12697-12705. |
| [34] | DENG J, SHI S, LI P, et al. Voxel R-CNN: towards high performance voxel-based 3D object detection [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021,32(2): 1201-1209. |
| [1] | Yinlong JIAN, Xuebin CHEN, Zhongrui JING, Qi ZHONG, Zhenbo ZHANG. Data augmentation scheme based on conditional generative adversarial network in federated learning [J]. Journal of Computer Applications, 2026, 46(1): 21-32. |
| [2] | Binhong XIE, Rui WANG, Rui ZHANG, Yingjun ZHANG. Agent prototype distillation algorithm for few-shot object detection [J]. Journal of Computer Applications, 2026, 46(1): 233-241. |
| [3] | Wen LI, Kairong LI, Kai YANG. Subgraph-aware contrastive learning with data augmentation [J]. Journal of Computer Applications, 2026, 46(1): 1-9. |
| [4] | Shuwen HUANG, Keyu GUO, Xiangyu SONG, Feng HAN, Shijie SUN, Huansheng SONG. Multi-target 3D visual grounding method based on monocular images [J]. Journal of Computer Applications, 2026, 46(1): 207-215. |
| [5] | Yu SANG, Tong GONG, Chen ZHAO, Bowen YU, Siman LI. Domain-adaptive nighttime object detection method with photometric alignment [J]. Journal of Computer Applications, 2026, 46(1): 242-251. |
| [6] | Zhihui ZAN, Yajing WANG, Ke LI, Zhixiang YANG, Guangyu YANG. Multi-feature fusion speech emotion recognition method based on SAA-CNN-BiLSTM network [J]. Journal of Computer Applications, 2026, 46(1): 69-76. |
| [7] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. |
| [8] | Chuang WANG, Lu YU, Jianwei CHEN, Cheng PAN, Wenbo DU. Review of open set domain adaptation [J]. Journal of Computer Applications, 2025, 45(9): 2727-2736. |
| [9] | Jiaxiang ZHANG, Xiaoming LI, Jiahui ZHANG. Few-shot object detection algorithm based on new category feature enhancement and metric mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2984-2992. |
| [10] | Lili WEI, Lirong YAN, Xiaofen TANG. Contextual semantic representation and pixel relationship correction for few-shot object detection [J]. Journal of Computer Applications, 2025, 45(9): 2993-3002. |
| [11] | Binhong XIE, Yingkun LA, Yingjun ZHANG, Rui ZHANG. Semi-supervised object detection framework guided by self-paced learning [J]. Journal of Computer Applications, 2025, 45(8): 2546-2554. |
| [12] | Chengzhi YAN, Ying CHEN, Kai ZHONG, Han GAO. 3D object detection algorithm based on multi-scale network and axial attention [J]. Journal of Computer Applications, 2025, 45(8): 2537-2545. |
| [13] | Liang CHEN, Xuan WANG, Kun LEI. Helmet wearing detection algorithm for complex scenarios based on cross-layer multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(7): 2333-2341. |
| [14] | Zimo ZHANG, Xuezhuan ZHAO. Multi-scale sparse graph guided vision graph neural networks [J]. Journal of Computer Applications, 2025, 45(7): 2188-2194. |
| [15] | Pingping YU, Yuting YAN, Xinliang TANG, He SU, Jianchao WANG. Multi-object tracking algorithm for construction machinery in transmission line scenarios [J]. Journal of Computer Applications, 2025, 45(7): 2351-2360. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||