Journal of Computer Applications ›› 2015, Vol. 35 ›› Issue (5): 1328-1332.DOI: 10.11772/j.issn.1001-9081.2015.05.1328

Previous Articles     Next Articles

Collaborative ranking algorithm by explicit and implicit feedback fusion

LI Gai1,2,3   

  1. 1. School of Electronics and Information Engineering, Shunde Polytechnic, Shunde Guangdong 528333, China;
    2. School of Information Science and Technology, Sun Yat-Sen University, Guangzhou Guangdong 510006, China;
    3. Software Institute, Sun Yat-Sen University, Guangzhou Guangdong 510275, China
  • Received:2014-12-19 Revised:2015-02-03 Online:2015-05-10 Published:2015-05-14

融合显/隐式反馈的协同排序算法

李改1,2,3   

  1. 1. 顺德职业技术学院 电子与信息工程学院, 广东 顺德 528333;
    2. 中山大学 信息科学与技术学院, 广州 510006;
    3. 中山大学 软件研究所, 广州 510275
  • 通讯作者: 李改
  • 作者简介:李改(1981-),男,湖北松滋人,讲师,博士研究生,CCF会员,主要研究方向:机器学习、人工智能、推荐系统.
  • 基金资助:

    国家自然科学基金资助项目(61003140,61033010);2011年度高校基本科研业务费中山大学青年教师培育项目(理工科)(111gpy58);佛山市产学研专项资金项目(2012HC100303);广东省高等职业教育教学改革2014年度项目(201401294);广东省高等职业教育教学改革2013年度项目(20130201109);广东省高等职业教育教学改革2012年度项目(20120302050);顺德职业技术学院2013年度校级教学改革与研究重点项目(2013-SZJGXM13).

Abstract:

The problem of the previous research about collaborative ranking is that it does not make full use of the information in the dataset, either focusing on explicit feedback data, or focusing on implicit feedback data. Until now, nobody researches collaborative ranking algorithm by explicit and implicit feedback fusion. In order to overcome the defects of prior research, a new collaborative ranking algorithm by explicit and implicit feedback fusion namedMERR_SVD++ was proposed to optimize Expected Reciprocal Rank (ERR) based on the newest Extended Collaborative Less-is-More Filtering (xCLiMF) model and Singular Value Decomposition++ (SVD++) algorithm. The experimental results on practical datasets show that, the values of Normalized Discounted Cumulative Gain (NDCG) and ERR for MERR_SVD++ are increased by 25.9% compared with xCLiMF, Cofi Ranking (CofiRank), PopRec and Random collaborative ranking algorithms, and the running time of MERR_SVD++ showed a linear correlation with the number of ratings. Because of the high precision and the good expansibility, MERR_SVD++ is suitable for processing big data, and has wide application prospect in the field of Internet information recommendation.

Key words: recommended system, collaborative filtering, collaborative ranking, implicit feedback, explicit feedback

摘要:

之前有关协同排序算法的研究没有充分利用数据集中信息的问题,要么只侧重于研究显式评分数据,要么只侧重于研究隐式评分数据,目前还没有人运用排序学习的思想把二者结合起来进行研究.针对之前研究的不足,在最新的扩展的少即是好协同过滤(xCLiMF)模型和最经典的变形的奇异值分解(SVD++)算法的基础上,提出了一种融合显/隐式反馈的协同排序算法MERR_SVD++来直接优化排序学习的评价指标ERR.在实际数据集上实验验证,与经典的xCLiMF、Cofi排序(CofiRank)、PopRec、Random算法相比,MERR_SVD++算法在归一化折损累积增益(NDCG)和预期的相关性排序(ERR)这两个评价指标下性能均提高了25.9%以上,而且算法运算时间与评分点个数线性相关.由于MERR_SVD++算法推荐精度高、可扩展性好,因此适用于处理大数据,在互联网信息推荐领域具有广泛的应用前景.

关键词: 推荐系统, 协同过滤, 协同排序, 隐式反馈, 显式反馈

CLC Number: