[1] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6):734-749. [2] PAN R, ZHOU Y, CAO B,et al. One-class collaborative filtering [C]// Proceedings of the 22nd International Conference on Data Mining. Piscataway: IEEE, 2008:502-511. [3] HERNANDEZ-LOBOTA J M, HOULSBY N, GHAHRAMANI Z B. Probabilistic matrix factorization with non-random missing data[C]// Proceedings of the 31nd International Conference on Machine Learning. Piscataway: IEEE, 2014: 1257-1264. [4] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 22nd International Conference on Uncertainty in Artificial Intelligence. Montreal: AUAI Press, 2009: 52-461. [5] LIU T Y. Learning to rank for information retrieval[M]. New York: Springer, 2011: 1-304. [6] SUHRID B, SUMIT C. Collaborative ranking[C]// Proceedings of the 2012 ACM International Conference on Web Search and Data Mining. New York: ACM, 2012:143-152. [7] KOREN Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]// Proceedings of the 25th International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 426-434. [8] SHI Y, KARATZOGLOU A, BALTRUNAS L, et al. xCLiMF: Optimizing expected reciprocal rank for data with multiple levels of relevance[C]// Proceedings of the 6th ACM Conference on Recommender Systems. New York: ACM, 2013: 431-433. [9] PAN W, LI C. GBPR: group preference based Bayesian personalized ranking for one-class collaborative filtering[C]// Proceedings of the 26th International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 667-676. [10] SHI Y, KARATZOGLOU A, BALTRUNAS L, et al. CLiMF: Collaborative Less-is-More Filtering [C]// Proceedings of the 23rd International Conference on Artificial Intelligence. New York: ACM, 2013: 3077-3081. [11] SREBRO N, JASON D M, TOMMI J. Maximum-margin matrix factorization[C]// Proceedings of the 22nd International Conference on Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2005: 252-260. [12] WEIMER M, KARATZOGLOU A, LE Q, et al. CofiRank-maximum margin matrix factorization for collaborative ranking [C]// Proceedings of the 22nd International Conference on Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2007: 1593-1600. [13] LIU N, ZHAO M, YANG Q. Probabilistic latent preference analysis for collaborative filtering [C]// Proceedings of the 2009 ACM International Conference on Information and Knowledge Management. New York: ACM, 2009: 759-766. [14] LIU N, YANG Q. EigenRank: a ranking-oriented approach to collaborative filtering[C]// Proceedings of the 22nd International Conference on Research and Development in Information Retrieval. New York: ACM, 2008: 83-90. [15] SHI Y, KARATZOGLOU A, BALTRUNAS L, et al. CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering[C]// Proceedings of the 5th ACM Conference on Recommender Systems. New York: ACM, 2012: 139-146. |