[1] GONZALEZ R Z, WOODS R E.数字图像处理[M].阮秋琦,译.2版.北京:电子工业出版社,2005:116-120. (GONZALEZ R Z, WOODS R E. Digital image processing[M]. RUAN Q Q, translated. 2nd ed. Beijing: Electronics Industry Press, 2005: 116-120.) [2] BROWNRIGG D R K. The weighted median filter[J]. Communications of the ACM, 1984, 27(8): 807-818. [3] KO S-J, LEE Y H. Center weighted median filters and their applications to image enhancement[J]. IEEE Transactions on Circuits and Systems, 1991, 38(9): 984-993. [4] NIEMINEN A, HEINONEN P, NEUVO Y. A new class of detail preserving filters for image processing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(1): 74-90. [5] SUN T,NEUVO Y. Detail-preserving median based filters in image processing[J]. Pattern Recognition Letters, 1994, 15(4): 341-347. [6] HWANG H, HADDAD R A. Adaptive median filters: new algorithm and results[J]. IEEE Transactions on Image Processing, 1995, 4(4): 499-502. [7] CHEN T, WU H R. Adaptive impulse detection using center weighted median filters[J]. IEEE Signal Processing Letters, 2001, 8(1): 1-3. [8] TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[C]//ICCV '98: Proceedings of the Sixth International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 1998: 839-846. [9] BUADES A, COLL B, MOREL J M. A review of image de-noising algorithms, with a new one[J]. Multiscale Modeling and Simulation, 2005, 4(2): 490-530. [10] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. [11] DONG W, ZHANG L, SHI G, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1620-1630. [12] GARNETT R, HUEGERICH T, CHUI C, et al. A universal noise removal algorithm with an impulse detector[J]. IEEE Transactions on Image Processing, 2005, 14(11): 1747-1754. [13] Xiong b, YIN Z. A universal denoising framework with a new impulse detector and nonlocal means[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1663-1675. [14] LIU J, TAI X-C, HUANG H, et al. A weighted dictionary learning models for denoising images corrupted by mixed noise[J]. IEEE Transactions on Image Processing, 2013, 22(3): 1108-1120. [15] JIANG J L, ZHANG L, YANG J. Mixed noise removal by weighted encoding with sparse nonlocal regularization[J]. IEEE Transactions on Image Processing, 2014, 23(6): 2651-2662. [16] WU J, TANG C. Random-valued impulse noise removal using fuzzy weighted non-local means[J]. Signal, Image and Video Processing, 2014, 8(2): 349-355. [17] YANG M, ZHANG L, YANG J, et al. Regularized robust coding for face recognition[J]. IEEE Transactions on Image Processing, 2013, 22(5): 1753-1766. [18] DAUBECHIES I, DEVORE R, FORNASIER M, et al. Iteratively re-weighted least squares minimization:Proof of faster than linear rate for sparse recovery[C]//CISS 2008: Proceedings of the 42nd Annual Conference on Information Science and Systems. Piscataway, NJ: IEEE, 2008: 26-29. [19] ZHANG L, ZHANG D, MOU X, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386. |